Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation

碳储量 生物量(生态学) 库存(枪支) 环境科学 碳纤维 林业 遥感 落叶松 地质学 农学 植物 地理 计算机科学 生物 海洋学 考古 气候变化 复合数 算法
作者
Yu Bai,Yong Pang,Dan Kong
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:11: 100213-100213
标识
DOI:10.1016/j.fecs.2024.100213
摘要

Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials. Recent studies have shown that integrating process-based models (PBMs) with remote sensing data can enhance simulations from stand to regional scales, significantly improving the ability to simulate forest growth and carbon stock dynamics. However, the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited. In this study, we applied the parameterized 3-PG (Physiological Principles Predicting Growth) model across the Mengjiagang Forest Farm (MFF) to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation. The model was used to simulate average diameter at breast height (DBH) and total biomass, which were later validated with a wide range of observation data including sample plot data, forest management inventory data, and airborne laser scanning data. The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale, with determination coefficients ranging from 0.78 to 0.88. Based on the estimation of total biomass, we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m, which helps with relevant management advice. These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales. In addition, this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助焦雯瑶采纳,获得10
刚刚
进步面包笑哈哈应助咻咻采纳,获得10
刚刚
蒲公英完成签到,获得积分10
刚刚
刚刚
天天快乐应助xaa采纳,获得10
1秒前
1秒前
深情安青应助zz采纳,获得10
1秒前
dd发布了新的文献求助10
1秒前
ccchao发布了新的文献求助10
2秒前
科研通AI6.1应助liuzhanyu采纳,获得10
2秒前
兴十一发布了新的文献求助10
3秒前
Owen应助DaemonUUU采纳,获得10
3秒前
5秒前
bruce完成签到,获得积分10
5秒前
菜菜发布了新的文献求助10
5秒前
wanci应助ww采纳,获得10
6秒前
6秒前
YY完成签到,获得积分10
6秒前
7秒前
今后应助认真的寒香采纳,获得10
7秒前
8秒前
机灵水池完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
11秒前
seaboy3完成签到,获得积分10
12秒前
12秒前
酷波er应助呆一起采纳,获得10
12秒前
包妹完成签到,获得积分10
13秒前
666完成签到,获得积分10
13秒前
wa_wa_wa发布了新的文献求助10
14秒前
完美世界应助Cyuan采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
wjf完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
aK3发布了新的文献求助10
16秒前
Pi1sces完成签到,获得积分10
17秒前
科研通AI6.1应助qq大魔王采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082