Multidimensional Edge Perception Model for Rail Vehicle Operational States Based On Artificial Intelligence of Things

计算机科学 感知 GSM演进的增强数据速率 人工智能 生物 神经科学
作者
Shaoze Zhou,Tianshuo Guo,Xingsen Luan,Yonghua Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (18): 29728-29741
标识
DOI:10.1109/jiot.2024.3405356
摘要

In the domain of Prognostics and Health Management (PHM) for intelligent rail vehicles, real-time multidimensional perception is crucial for vehicle monitoring. However, achieving such a perception of low-cost, computationally limited Internet of Things (IoT) devices presents a significant challenge. Given the lack of effective IoT multidimensional perception models and the surging demand for PHM data analytics, this study proposes a non-invasive multidimensional Artificial Intelligence for Internet of Things (AIoT) perception model to improve vehicle performance and predictive maintenance. The model uses the Tiny Machine Learning approach to deploy a lightweight model on the edge devices of rail vehicles, which intelligently recognizes the vehicle operational states in real-time by monitoring multidimensional data such as acceleration and tilt angle, and transmits the resulting data to the IoT cloud for fusion and classification statistics. Experiments conducted in a metro environment show that the model can recognize nine complex operational states in both real-time and offline modes with an accuracy rate of more than 97%, which is significantly better than the traditional multilayer perceptron (MLP) model. The model's two-axis recognition outperforms single-axis and three-axis methods and exhibits strong robustness under vibration conditions. Its versatility allows extension to different sensors and fault state detection and can be applied to intelligent condition monitoring in various transportation and machinery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen发布了新的文献求助10
1秒前
1秒前
ll发布了新的文献求助10
1秒前
2秒前
cc完成签到,获得积分10
2秒前
lu完成签到,获得积分10
2秒前
伍锦华发布了新的文献求助10
2秒前
2秒前
hmh完成签到,获得积分10
2秒前
1233330完成签到,获得积分10
3秒前
yan完成签到,获得积分10
3秒前
dra9on发布了新的文献求助10
3秒前
邓佳鑫Alan应助zfy采纳,获得10
4秒前
科研通AI2S应助zfy采纳,获得10
4秒前
怕黑的灵萱完成签到 ,获得积分10
4秒前
hh发布了新的文献求助10
4秒前
4秒前
www完成签到,获得积分10
4秒前
4秒前
Xx完成签到,获得积分10
5秒前
只因完成签到,获得积分10
5秒前
5秒前
深情笑南完成签到,获得积分20
5秒前
asdfghj发布了新的文献求助10
6秒前
zz应助Shirley采纳,获得30
6秒前
开朗发夹完成签到,获得积分10
7秒前
同學你該吃藥了完成签到 ,获得积分10
7秒前
7秒前
8秒前
酷波er应助fisher采纳,获得40
8秒前
九命猫完成签到 ,获得积分10
8秒前
topsun发布了新的文献求助10
9秒前
皮三问完成签到,获得积分10
9秒前
烟花应助紫愿采纳,获得10
9秒前
Yyy完成签到,获得积分10
9秒前
cowboy123完成签到,获得积分10
9秒前
9秒前
景代丝发布了新的文献求助10
9秒前
yiyiyiyiyi//完成签到,获得积分10
9秒前
Qi完成签到 ,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060