Deep Network Cascade for Dynamic Cardiac MRI Reconstruction with Motion Feature Incorporation and the Fourier Neural Attention

级联 傅里叶变换 人工智能 计算机科学 人工神经网络 计算机视觉 特征(语言学) 迭代重建 运动(物理) 模式识别(心理学) 物理 工程类 语言学 化学工程 量子力学 哲学
作者
Jingshuai Liu,Chen Qin,Mehrdad Yaghoobi
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 774-789
标识
DOI:10.1109/tci.2024.3402335
摘要

Magnetic resonance imaging (MRI) provides a radiation-free and non-invasive tool for clinical diagnosis. However, it suffers from a prohibitively long acquisition process for many applications. Compressed sensing (CS) methods have been used for reconstruction from under-sampled data in accelerated acquisitions. Although effective in practice, the image quality can be limited by the expressiveness of handcrafted signal priors such as sparsity. Dynamic MRI requires high spatial and temporal resolution, which makes CS to be more difficult to recover the data taken within a short scanning time. In this paper, we explore to solve the challenging inverse problem by introducing an optimization-inspired deep leaning framework to recover dynamic MRI images. A novel mask-guided motion feature incorporation (Mask-MFI) scheme is proposed to benefit the recovery of the dynamic content, and a spatio-temporal Fourier neural block (ST-FNB) is designed to improve the reconstruction performance by leveraging the redundancies in spatial and temporal domains in a computation and parameter efficient manner. The comparative experiments demonstrate that the proposed framework outperforms other state-of-the-art methods at a range of accelerations both qualitatively and quantitatively. Ablation studies confirm the effectiveness of model components. Moreover, the adaptability and generalization capacity of the introduced method are also validated, which demonstrates the potential of the application of our proposed approach to other reconstruction models to boost their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
zx1211完成签到,获得积分10
2秒前
可期发布了新的文献求助50
2秒前
young_lifestyle应助谨慎半鬼采纳,获得10
2秒前
2秒前
young_lifestyle应助谨慎半鬼采纳,获得10
2秒前
英俊的铭应助徐恭采纳,获得10
3秒前
4秒前
李生龙完成签到,获得积分10
4秒前
4秒前
谢亭亭发布了新的文献求助20
4秒前
5秒前
ccc完成签到 ,获得积分10
5秒前
lilivite应助sc30采纳,获得30
5秒前
CipherSage应助xukaixuan001采纳,获得10
6秒前
百里盼山发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
危险份子发布了新的文献求助10
7秒前
勤恳发布了新的文献求助10
7秒前
7秒前
慧子发布了新的文献求助10
8秒前
田様应助psybrain9527采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
asdfqwer发布了新的文献求助10
9秒前
9秒前
星空发布了新的文献求助10
9秒前
9秒前
易酰水烊酸应助TX采纳,获得10
9秒前
10秒前
章早立发布了新的文献求助10
10秒前
10秒前
10秒前
雨木目完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959007
求助须知:如何正确求助?哪些是违规求助? 3505322
关于积分的说明 11123366
捐赠科研通 3236970
什么是DOI,文献DOI怎么找? 1788969
邀请新用户注册赠送积分活动 871459
科研通“疑难数据库(出版商)”最低求助积分说明 802805