Deep Network Cascade for Dynamic Cardiac MRI Reconstruction with Motion Feature Incorporation and the Fourier Neural Attention

级联 傅里叶变换 人工智能 计算机科学 人工神经网络 计算机视觉 特征(语言学) 迭代重建 运动(物理) 模式识别(心理学) 物理 工程类 语言学 化学工程 量子力学 哲学
作者
Jingshuai Liu,Chen Qin,Mehrdad Yaghoobi
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 774-789
标识
DOI:10.1109/tci.2024.3402335
摘要

Magnetic resonance imaging (MRI) provides a radiation-free and non-invasive tool for clinical diagnosis. However, it suffers from a prohibitively long acquisition process for many applications. Compressed sensing (CS) methods have been used for reconstruction from under-sampled data in accelerated acquisitions. Although effective in practice, the image quality can be limited by the expressiveness of handcrafted signal priors such as sparsity. Dynamic MRI requires high spatial and temporal resolution, which makes CS to be more difficult to recover the data taken within a short scanning time. In this paper, we explore to solve the challenging inverse problem by introducing an optimization-inspired deep leaning framework to recover dynamic MRI images. A novel mask-guided motion feature incorporation (Mask-MFI) scheme is proposed to benefit the recovery of the dynamic content, and a spatio-temporal Fourier neural block (ST-FNB) is designed to improve the reconstruction performance by leveraging the redundancies in spatial and temporal domains in a computation and parameter efficient manner. The comparative experiments demonstrate that the proposed framework outperforms other state-of-the-art methods at a range of accelerations both qualitatively and quantitatively. Ablation studies confirm the effectiveness of model components. Moreover, the adaptability and generalization capacity of the introduced method are also validated, which demonstrates the potential of the application of our proposed approach to other reconstruction models to boost their performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wyq完成签到,获得积分10
刚刚
东方傲儿发布了新的文献求助10
刚刚
刚刚
1秒前
仁爱的觅夏完成签到,获得积分10
1秒前
BEMJ发布了新的文献求助30
1秒前
zmc_297完成签到,获得积分10
1秒前
裤里发布了新的文献求助10
1秒前
fjhsg25发布了新的文献求助10
1秒前
隐形曼青应助LXL采纳,获得10
2秒前
3秒前
4秒前
5秒前
深情安青应助cccc采纳,获得10
5秒前
5秒前
细心擎呢发布了新的文献求助10
6秒前
7秒前
小彭仔完成签到,获得积分10
7秒前
罗咩咩发布了新的文献求助10
9秒前
丘比特应助ninomi采纳,获得10
9秒前
9秒前
蓝天应助聪慧的醉波采纳,获得10
9秒前
10秒前
彭于晏应助霸气的柠檬采纳,获得10
11秒前
大模型应助吴龙采纳,获得10
11秒前
茶米发布了新的文献求助10
12秒前
12秒前
单薄的西装完成签到,获得积分10
13秒前
NexusExplorer应助Wjp采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
shadow完成签到,获得积分10
14秒前
balalal发布了新的文献求助10
14秒前
CodeCraft应助sghsh采纳,获得10
15秒前
CodeCraft应助zd200572采纳,获得10
15秒前
Hello应助Dylan采纳,获得10
15秒前
珊明治完成签到,获得积分10
16秒前
17秒前
ak24765完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133