Improving the Oil Separation of Composite Lubricating Polyurea Grease via Regulating the Thickener Network Structure

聚脲 润滑油 复合数 材料科学 化学工程 复合材料 化学 高分子化学 工程类 聚氨酯
作者
Jiabei Wang,Zhaoyang Guo,Wen‐Jing Hu,Xiuhong Li,Hengyi Lu,Jiusheng Li
出处
期刊:Macromolecules [American Chemical Society]
卷期号:57 (11): 5486-5496 被引量:2
标识
DOI:10.1021/acs.macromol.4c00101
摘要

Lubricating grease comprises a thickener network filled with base oil. It mainly exerts a lubricating effect by secreting oil inside its network to protect the friction surface. The increase in lithium prices and its physiological toxicity have positioned polyurea grease as one of the most promising lubricants. Presynthetic thickener-based fabrication strategy, which avoids using toxic raw materials, represents a green production route for grease. However, the correlation among thickener structure, oil separation, and tribological performance remains unclear. Herein, three polyurea greases with different thickener structures were synthesized by adjusting the polymerization degree of the polyether oil via the presynthetic thickener strategy. The real-time observation of the thickener structure evolution revealed that increasing the oil polymerization degree would help form longer thickener fibers. A high-strength network structure composed of long fibers was observed in a higher polymerization degree oil (HG). The combined results of low field nuclear magnetic resonance characterization and molecular simulations reveal that a higher polymerization degree oil will induce more hydrogen bonds between base oil and thickener, thereby providing a strong binding ability to the base oil molecules and stable oil separation at the interface during the shearing process. As a result, HG grease could maintain effective protection even under strict test conditions. These results can provide new insights into the structure–property relationship of composite grease and help to develop high-performance lubricants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Manqing发布了新的文献求助10
刚刚
娟不卷发布了新的文献求助10
刚刚
温暖靖柏应助tulips采纳,获得10
刚刚
1秒前
ding应助jiqiang采纳,获得10
1秒前
2秒前
1111发布了新的文献求助10
2秒前
2秒前
3秒前
开心千青发布了新的文献求助10
3秒前
4秒前
眠心发布了新的文献求助10
5秒前
菓小柒完成签到 ,获得积分10
6秒前
7秒前
小费完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
领导范儿应助迷人的德天采纳,获得10
11秒前
baobao完成签到,获得积分10
11秒前
义气青丝发布了新的文献求助10
13秒前
娟不卷完成签到,获得积分20
14秒前
科研小白完成签到,获得积分10
14秒前
oldblack发布了新的文献求助10
16秒前
月亮不睡我不睡完成签到,获得积分10
16秒前
16秒前
小蘑菇应助饼饼采纳,获得10
17秒前
xxxxxxxxx发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
我是老大应助朴素剑心采纳,获得10
20秒前
SciGPT应助Grace采纳,获得30
20秒前
21秒前
22秒前
叨叨发布了新的文献求助20
22秒前
22秒前
情怀应助ARIA采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730659
求助须知:如何正确求助?哪些是违规求助? 5324531
关于积分的说明 15319452
捐赠科研通 4877021
什么是DOI,文献DOI怎么找? 2619917
邀请新用户注册赠送积分活动 1569204
关于科研通互助平台的介绍 1525787