Improving the Oil Separation of Composite Lubricating Polyurea Grease via Regulating the Thickener Network Structure

聚脲 润滑油 复合数 材料科学 化学工程 复合材料 化学 高分子化学 工程类 聚氨酯
作者
Jiabei Wang,Zhaoyang Guo,Wen‐Jing Hu,Xiuhong Li,Hengyi Lu,Jiusheng Li
出处
期刊:Macromolecules [American Chemical Society]
卷期号:57 (11): 5486-5496 被引量:2
标识
DOI:10.1021/acs.macromol.4c00101
摘要

Lubricating grease comprises a thickener network filled with base oil. It mainly exerts a lubricating effect by secreting oil inside its network to protect the friction surface. The increase in lithium prices and its physiological toxicity have positioned polyurea grease as one of the most promising lubricants. Presynthetic thickener-based fabrication strategy, which avoids using toxic raw materials, represents a green production route for grease. However, the correlation among thickener structure, oil separation, and tribological performance remains unclear. Herein, three polyurea greases with different thickener structures were synthesized by adjusting the polymerization degree of the polyether oil via the presynthetic thickener strategy. The real-time observation of the thickener structure evolution revealed that increasing the oil polymerization degree would help form longer thickener fibers. A high-strength network structure composed of long fibers was observed in a higher polymerization degree oil (HG). The combined results of low field nuclear magnetic resonance characterization and molecular simulations reveal that a higher polymerization degree oil will induce more hydrogen bonds between base oil and thickener, thereby providing a strong binding ability to the base oil molecules and stable oil separation at the interface during the shearing process. As a result, HG grease could maintain effective protection even under strict test conditions. These results can provide new insights into the structure–property relationship of composite grease and help to develop high-performance lubricants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈末应助烦烦烦采纳,获得10
1秒前
虚拟的飞双完成签到 ,获得积分10
3秒前
3秒前
怡然枫叶完成签到,获得积分10
4秒前
5秒前
7秒前
哈哈哈发布了新的文献求助10
9秒前
10秒前
11秒前
陈末应助烦烦烦采纳,获得10
12秒前
12秒前
可爱的函函应助怕黑鲜花采纳,获得10
13秒前
典雅问寒应助魅影采纳,获得10
13秒前
李爱国应助雀惬采纳,获得10
15秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
luck完成签到 ,获得积分10
20秒前
hrpppp发布了新的文献求助30
21秒前
baihehuakai发布了新的文献求助10
23秒前
宝剑葫芦发布了新的文献求助10
23秒前
alicia发布了新的文献求助10
23秒前
炙热迎波发布了新的文献求助10
25秒前
25秒前
pluto应助爱吃地锅鱼采纳,获得20
27秒前
30秒前
alicia完成签到,获得积分10
31秒前
31秒前
饕餮肉丝完成签到,获得积分10
35秒前
刘晓雨完成签到,获得积分10
37秒前
38秒前
38秒前
dy1994完成签到,获得积分10
41秒前
43秒前
夔kk发布了新的文献求助10
44秒前
44秒前
45秒前
浮游应助草莓能宝宝采纳,获得30
49秒前
Lottery发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
51秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425301
求助须知:如何正确求助?哪些是违规求助? 4539379
关于积分的说明 14167473
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444285
邀请新用户注册赠送积分活动 1435283
关于科研通互助平台的介绍 1412688