Simulation-assisted parameter optimization and tribological behavior of graphene reinforced IN718 matrix composite prepared by SLM

材料科学 复合数 摩擦学 石墨烯 复合材料 基质(化学分析) 纳米技术
作者
Y. T. Chu,Haichuan Shi,Peilei Zhang,Zhishui Yu,Hua Yan,Qinghua Lu,Shijie Song,Kaichang Yu
出处
期刊:Intermetallics [Elsevier BV]
卷期号:170: 108307-108307 被引量:2
标识
DOI:10.1016/j.intermet.2024.108307
摘要

To enhance the wear resistance of nickel-based superalloys and broaden their applications, we investigated the microstructural organization and wear properties of IN718 composites reinforced with graphene nanoparticles fabricated through selective laser melting. The optimal parameters for printing were obtained by combining experiments and simulations, and their wear patterns were subsequently explored at different sliding speeds (250–350 r/min) and loads (4N–8N). Based on the composite TEM images combined with experiments, it was found that the homogeneous dispersion of graphene nanoparticles in the 3D-printed GNPs/IN718 composites acted as dislocation reinforcement and load reinforcement. The average microhardness of the GNPs/IN718 composites increased by 24.2 % compared to the IN718 alloy. In the friction test, GNPs acts as a lubricating phase, resulting in a significant increase in the friction wear performance of the composite. The average coefficient of friction decreased by 33.8 % and the wear rate decreased by 51.3 %. The wear state of the composites change from abrasive wear to delamination wear and a combination of delamination wear and oxidative wear as the speed and load are increased, respectively. This paper provides potential guidance for further improving the wear performance of additively manufactured nickel-based superalloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wang1012发布了新的文献求助10
2秒前
3秒前
科研通AI5应助林二车娜姆采纳,获得10
3秒前
dake发布了新的文献求助10
3秒前
W雩发布了新的文献求助10
4秒前
李爱国应助六碗鱼采纳,获得10
5秒前
风中梦蕊完成签到 ,获得积分10
6秒前
科目三应助wang1012采纳,获得10
8秒前
LuLan0401完成签到,获得积分10
8秒前
9秒前
ally完成签到,获得积分10
9秒前
科研通AI5应助rainc采纳,获得10
9秒前
763完成签到 ,获得积分10
11秒前
xuan完成签到,获得积分10
12秒前
13秒前
爱学习发布了新的文献求助10
14秒前
李珂完成签到,获得积分10
14秒前
天天快乐应助小面包采纳,获得30
14秒前
nieinei完成签到 ,获得积分10
15秒前
16秒前
shenghaowen完成签到,获得积分10
16秒前
科研通AI5应助xuan采纳,获得10
17秒前
星星完成签到,获得积分10
18秒前
万能图书馆应助文学痞采纳,获得10
19秒前
猫与咖啡发布了新的文献求助10
20秒前
爱学习完成签到,获得积分10
21秒前
22秒前
温良和风完成签到,获得积分10
22秒前
22秒前
23秒前
英俊的铭应助旧雨新知采纳,获得10
24秒前
Ov5发布了新的文献求助10
25秒前
一二一发布了新的文献求助10
25秒前
友好青完成签到,获得积分10
26秒前
26秒前
efls发布了新的文献求助10
26秒前
CodeCraft应助小晓采纳,获得10
27秒前
不换金正七散完成签到,获得积分10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740848
求助须知:如何正确求助?哪些是违规求助? 3283674
关于积分的说明 10036206
捐赠科研通 3000428
什么是DOI,文献DOI怎么找? 1646491
邀请新用户注册赠送积分活动 783669
科研通“疑难数据库(出版商)”最低求助积分说明 750427