Simulation-assisted parameter optimization and tribological behavior of graphene reinforced IN718 matrix composite prepared by SLM

材料科学 复合数 摩擦学 石墨烯 复合材料 基质(化学分析) 纳米技术
作者
Yang Chu,Haichuan Shi,Peilei Zhang,Zhishui Yu,Hua Yan,Qinghua Lu,Shijie Song,Kaichang Yu
出处
期刊:Intermetallics [Elsevier BV]
卷期号:170: 108307-108307 被引量:4
标识
DOI:10.1016/j.intermet.2024.108307
摘要

To enhance the wear resistance of nickel-based superalloys and broaden their applications, we investigated the microstructural organization and wear properties of IN718 composites reinforced with graphene nanoparticles fabricated through selective laser melting. The optimal parameters for printing were obtained by combining experiments and simulations, and their wear patterns were subsequently explored at different sliding speeds (250–350 r/min) and loads (4N–8N). Based on the composite TEM images combined with experiments, it was found that the homogeneous dispersion of graphene nanoparticles in the 3D-printed GNPs/IN718 composites acted as dislocation reinforcement and load reinforcement. The average microhardness of the GNPs/IN718 composites increased by 24.2 % compared to the IN718 alloy. In the friction test, GNPs acts as a lubricating phase, resulting in a significant increase in the friction wear performance of the composite. The average coefficient of friction decreased by 33.8 % and the wear rate decreased by 51.3 %. The wear state of the composites change from abrasive wear to delamination wear and a combination of delamination wear and oxidative wear as the speed and load are increased, respectively. This paper provides potential guidance for further improving the wear performance of additively manufactured nickel-based superalloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
儒雅路人完成签到,获得积分10
2秒前
OLDBLOW完成签到,获得积分10
3秒前
3秒前
liupangzi完成签到,获得积分10
3秒前
wang完成签到,获得积分10
3秒前
4秒前
Catherkk发布了新的文献求助10
4秒前
lcdamoy完成签到,获得积分10
5秒前
钱浩然发布了新的文献求助10
5秒前
烊烊发布了新的文献求助10
6秒前
十曰完成签到,获得积分10
11秒前
jjjjchou完成签到,获得积分10
12秒前
虚心的不二完成签到 ,获得积分10
14秒前
xuzj应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
fang应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
shiizii应助科研通管家采纳,获得10
15秒前
17秒前
火星上的雨莲完成签到,获得积分10
21秒前
开朗的绮山发布了新的文献求助150
21秒前
平淡远山发布了新的文献求助10
22秒前
热心市民小红花应助Roman采纳,获得10
23秒前
艺术家完成签到 ,获得积分10
24秒前
研友_ngqjz8完成签到,获得积分10
25秒前
LT完成签到 ,获得积分0
26秒前
优秀的dd完成签到 ,获得积分10
27秒前
JamesPei应助八月宁静采纳,获得10
27秒前
www完成签到 ,获得积分10
29秒前
自由如天完成签到,获得积分10
29秒前
轻松白桃给轻松白桃的求助进行了留言
30秒前
热心市民小红花应助Roman采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022