Automating Tomato Ripeness Classification and Counting with YOLOv9

成熟度 人工智能 计算机科学 数学 园艺 生物 成熟
作者
Hoang-Tu Vo,Kheo Chau Mui,Nhon Nguyen Thien,Po Tien
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.01504113
摘要

This article proposes a novel solution to the longstanding issue of ripe (or manual) tomato monitoring and counting, often relying on visual inspection, which is both timeconsuming, requires a lot of labor and prone to inaccuracies.By leveraging the power of artificial intelligence (AI) and image analysis techniques, a more efficient and precise method for automating this process is introduced.This approach promises to significantly reduce labor requirements while enhancing accuracy, thus improving overall quality and productivity.In this study, we explore the application of the latest version of YOLO (You Only Look Once), specifically YOLOv9, in automating the classification of tomato ripeness levels and counting tomatoes.To assess the performance of the proposed model, the study employs standard evaluation metrics including Precision, Recall, and mAP50.These metrics provide valuable insights into the model's ability to accurately detect and count tomatoes in real-world scenarios.The results indicate that the YOLOv9-based model achieves superior performance, as evidenced by the following evaluation metrics: Precision: 0.856, Recall: 0.832, and mAP50: 0.882.By leveraging YOLOv9 and comprehensive evaluation metrics, this research aims to provide a robust solution for automating tomato monitoring processes.Additionally, by offering the future integration of robotics, the collection phase can further optimize efficiency and enable the expansion of cultivation areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Yiqi采纳,获得10
刚刚
刚刚
七庙发布了新的文献求助10
1秒前
2秒前
上官若男应助Mytheye采纳,获得10
3秒前
3秒前
4秒前
深情安青应助缪风华采纳,获得10
4秒前
笑笑丶不爱笑完成签到,获得积分10
4秒前
5秒前
科学家发布了新的文献求助10
6秒前
luanzh发布了新的文献求助10
6秒前
6秒前
森尼吖发布了新的文献求助10
7秒前
哇哇哇发布了新的文献求助10
7秒前
7秒前
8秒前
tgoutgou完成签到,获得积分10
8秒前
无花果应助en采纳,获得30
8秒前
蝈蝈发布了新的文献求助10
9秒前
...发布了新的文献求助10
9秒前
john发布了新的文献求助10
9秒前
mt发布了新的文献求助10
10秒前
10秒前
10秒前
骥大大完成签到,获得积分20
10秒前
挽风发布了新的文献求助10
11秒前
11秒前
11秒前
明亮访烟发布了新的文献求助10
12秒前
12秒前
12秒前
小窝完成签到,获得积分10
12秒前
13秒前
13秒前
充电宝应助luanzh采纳,获得10
13秒前
zhaxiao发布了新的文献求助10
13秒前
14秒前
jjff完成签到,获得积分10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685