已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncertainty Quantification With Mixed Data by Hybrid Convolutional Neural Network for Additive Manufacturing

卷积神经网络 计算机科学 人工智能
作者
Jianhua Yin,Zhen Hu,Xiaoping Du
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:10 (3) 被引量:1
标识
DOI:10.1115/1.4065444
摘要

Abstract Surrogate models have become increasingly essential for replacing simulation models in additive manufacturing (AM) process analysis and design, particularly for assessing the impact of microstructural variations and process imperfections (aleatory uncertainty). However, these surrogate models can introduce predictive errors, introducing epistemic uncertainty. The challenge arises when dealing with image input data, which is inherently high-dimensional, making it challenging to apply existing uncertainty quantification (UQ) techniques effectively. To address this challenge, this study develops a new UQ methodology based on an existing concept of combining convolutional neural network (CNN) and Gaussian process (GP) regression (GPR). This CNN-GP method converts both numerical and image inputs into a unified, larger-sized image dataset, enabling direct dimension reduction with CNN. Subsequently, GPR constructs the surrogate model, not only providing predictions but also quantifying the associated model uncertainty. This approach ensures that the surrogate model considers both input-related aleatory uncertainty and model-related epistemic uncertainty when it is used for prediction, enhancing confidence in image-based AM simulations and informed decision-making. Three examples validate the high accuracy and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助无物采纳,获得50
刚刚
tiantian发布了新的文献求助30
6秒前
干净的冷菱关注了科研通微信公众号
6秒前
科研通AI2S应助PPP采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
苹果柚子发布了新的文献求助10
11秒前
11秒前
无物发布了新的文献求助50
13秒前
颜哈哈发布了新的文献求助30
14秒前
11111111112发布了新的文献求助10
14秒前
郝好完成签到 ,获得积分10
17秒前
car子发布了新的文献求助30
18秒前
18秒前
丰知然应助李思采纳,获得10
21秒前
颜哈哈完成签到,获得积分10
23秒前
Tumbleweed668发布了新的文献求助10
23秒前
RR完成签到,获得积分10
27秒前
苹果柚子完成签到,获得积分10
28秒前
苏楠完成签到 ,获得积分10
29秒前
30秒前
传奇3应助刘洋采纳,获得10
32秒前
35秒前
顾矜应助11111111112采纳,获得10
36秒前
华仔应助阿萌毛毛采纳,获得10
36秒前
36秒前
37秒前
40秒前
40秒前
lingzi670完成签到,获得积分10
41秒前
充电宝应助Tumbleweed668采纳,获得10
42秒前
43秒前
逻辑猫发布了新的文献求助20
44秒前
在查找发布了新的文献求助10
46秒前
听雨完成签到 ,获得积分10
51秒前
Ava应助啦啦啦采纳,获得10
51秒前
why完成签到,获得积分10
52秒前
52秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755