Why I revisit a historic town in Chengdu? Roles of cognitive image, affective image and memorable tourism experiences

旅游 认知 目的地图像 图像(数学) 广告 心理学 地理 业务 目的地 计算机科学 人工智能 考古 神经科学
作者
Xue Zhou,Siew Imm Ng,Weiwei Deng
出处
期刊:Asia Pacific Journal of Marketing and Logistics [Emerald (MCB UP)]
卷期号:36 (11): 2869-2888 被引量:1
标识
DOI:10.1108/apjml-09-2023-0822
摘要

Purpose Building upon the cognition-affect-behavior (CAB) model and script theory, this research aims to enrich the existing literature on historic town tourism consumption by offering empirical evidence of how the cognitive and affective images of historic towns contributes to tourists' memorable tourism experiences (MTE) and revisit intention, while identifying the cognitive image dimensions that are relevant for evaluating historic towns. Design/methodology/approach An on-site survey was conducted with 486 local tourists who visited the historic towns in Chengdu. partial least squares-structural equation modeling (PLS-SEM) was utilized to assess both the measurement and structural models. Findings (1) Cognitive image emerged as a significant predictor of affective image; (2) Both cognitive image and affective image had a positive influence on MTE, in which cognitive image played a more dominant role in shaping MTE; (3) MTE was found to strongly predict revisit intention among tourists; (4) MTE and affective image mediated the relationship between cognitive image and revisit intention. Research limitations/implications This research highlights the value of incorporating cognitive and affective constructs in predicting MTE, and the proposed integrated framework of the CAB model and script theory exhibits superior predictive power in understanding tourists' revisit intention. Practical implications This research provides empirical insights about how historic towns improve their marketing strategies as short day-trip destinations. Originality/value This research provides a novel insight on the applicability of an integrated model combining the CAB model and script theory in explaining the revisit behavior of local tourists within the context of historic towns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉若南发布了新的文献求助10
1秒前
椿人发布了新的文献求助10
1秒前
远看寒山完成签到,获得积分10
1秒前
1秒前
机智一一完成签到,获得积分20
2秒前
科目三应助快乐科研采纳,获得10
2秒前
老詹头发布了新的文献求助10
2秒前
yoozii发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
Xin发布了新的文献求助10
4秒前
4秒前
阿跃发布了新的文献求助10
5秒前
5秒前
wzq完成签到,获得积分20
5秒前
6秒前
7秒前
guo完成签到,获得积分10
7秒前
7秒前
7秒前
慕青应助十三采纳,获得10
8秒前
落寞白曼发布了新的文献求助10
9秒前
白白白发布了新的文献求助10
9秒前
10秒前
10秒前
zhutier应助还单身的又晴采纳,获得10
10秒前
怡然酬海发布了新的文献求助10
10秒前
旱钮发布了新的文献求助10
11秒前
11秒前
易小名发布了新的文献求助10
12秒前
万能图书馆应助blue2021采纳,获得10
12秒前
灰鸽舞发布了新的文献求助10
12秒前
等风的人发布了新的文献求助10
12秒前
Snow完成签到 ,获得积分10
13秒前
阿飞完成签到,获得积分10
13秒前
雨停了完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489951
求助须知:如何正确求助?哪些是违规求助? 3077035
关于积分的说明 9147332
捐赠科研通 2769213
什么是DOI,文献DOI怎么找? 1519635
邀请新用户注册赠送积分活动 704109
科研通“疑难数据库(出版商)”最低求助积分说明 702098