Evaluating ChatGPT-4V in chest CT diagnostics: a critical image interpretation assessment

医学 放射科 肺癌 医学诊断 放射性武器 金标准(测试) 核医学 医学物理学 病理
作者
Reza Dehdab,Andreas S. Brendlin,Sebastian Werner,Haidara Almansour,Sebastian Gassenmaier,Jan Michael Brendel,Konstantin Nikolaou,Saif Afat
出处
期刊:Japanese Journal of Radiology [Springer Science+Business Media]
被引量:7
标识
DOI:10.1007/s11604-024-01606-3
摘要

Abstract Purpose To assess the diagnostic accuracy of ChatGPT-4V in interpreting a set of four chest CT slices for each case of COVID-19, non-small cell lung cancer (NSCLC), and control cases, thereby evaluating its potential as an AI tool in radiological diagnostics. Materials and methods In this retrospective study, 60 CT scans from The Cancer Imaging Archive, covering COVID-19, NSCLC, and control cases were analyzed using ChatGPT-4V. A radiologist selected four CT slices from each scan for evaluation. ChatGPT-4V’s interpretations were compared against the gold standard diagnoses and assessed by two radiologists. Statistical analyses focused on accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), along with an examination of the impact of pathology location and lobe involvement. Results ChatGPT-4V showed an overall diagnostic accuracy of 56.76%. For NSCLC, sensitivity was 27.27% and specificity was 60.47%. In COVID-19 detection, sensitivity was 13.64% and specificity of 64.29%. For control cases, the sensitivity was 31.82%, with a specificity of 95.24%. The highest sensitivity (83.33%) was observed in cases involving all lung lobes. The chi-squared statistical analysis indicated significant differences in Sensitivity across categories and in relation to the location and lobar involvement of pathologies. Conclusion ChatGPT-4V demonstrated variable diagnostic performance in chest CT interpretation, with notable proficiency in specific scenarios. This underscores the challenges of cross-modal AI models like ChatGPT-4V in radiology, pointing toward significant areas for improvement to ensure dependability. The study emphasizes the importance of enhancing these models for broader, more reliable medical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Andy_Cheung应助亿一采纳,获得10
刚刚
烟花应助pai先生采纳,获得10
刚刚
Jasper应助大方芾采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
Scout应助科研通管家采纳,获得20
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
Ava应助科研通管家采纳,获得10
2秒前
请叫我超越完成签到,获得积分10
2秒前
Akim应助t通采纳,获得10
2秒前
星辰大海应助jj采纳,获得10
2秒前
乐乐应助xwwx采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI5应助yyy采纳,获得30
3秒前
Owen应助常乐的大宝剑采纳,获得10
3秒前
不苦发布了新的文献求助10
3秒前
汉堡包应助非也非也6采纳,获得10
3秒前
4秒前
4秒前
4秒前
shen应助化学天空采纳,获得10
4秒前
4秒前
追寻如容发布了新的文献求助10
4秒前
Owen应助ny采纳,获得10
5秒前
6秒前
6秒前
快叫我小陀螺完成签到 ,获得积分10
6秒前
pcr163应助yufan采纳,获得50
6秒前
roclie完成签到,获得积分10
7秒前
星辰大海应助jj采纳,获得10
7秒前
Singularity应助弱水三千采纳,获得10
7秒前
高分求助中
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Exploring the intriguing relationship: epicardial adipose tissue correlation with left atrial and left ventricular function across different heart failure types 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707584
求助须知:如何正确求助?哪些是违规求助? 3256168
关于积分的说明 9899194
捐赠科研通 2968607
什么是DOI,文献DOI怎么找? 1628026
邀请新用户注册赠送积分活动 771944
科研通“疑难数据库(出版商)”最低求助积分说明 743510