A two-stage CFD-GNN approach for efficient steady-state prediction of urban airflow and airborne contaminant dispersion

雷诺平均Navier-Stokes方程 计算流体力学 环境科学 计算机科学 解算器 大涡模拟 海洋工程 机械 模拟 湍流 工程类 物理 程序设计语言
作者
Runmin Zhao,Sumei Liu,Junjie Liu,Nan Jiang,Qingyan Chen
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:112: 105607-105607 被引量:5
标识
DOI:10.1016/j.scs.2024.105607
摘要

Urban design requires accurate prediction of wind, gusts, and contaminant dispersion to create sustainable cities. While computational fluid dynamics (CFD) models like large-eddy simulation (LES) provide accurate predictions, they are computationally expensive. Steady Reynolds-averaged Navier-Stokes (SRANS) is fast but inaccurate due to inherent limitations. This study proposes a two-stage CFD-graph neural network (GNN) framework for efficient steady-state prediction. A CFD solver provides the initial state, and then a GNN directly corrects the CFD outputs towards a high-fidelity target in a single inference step, bypassing SRANS flaws. LES results for parametrically generated urban cases provided training data. The proposed framework is thus distinguished from previous GNN applications, which were unsteady RANS surrogates that are still constrained by RANS inaccuracy. SRANS with the k-ε model provided an informative initial state for GNN (termed KE-GNN). Less detailed initializations increased prediction difficulty. Uneven sampling of building density and heights introduced dataset bias, improving specialization but reducing generalizability. For an actual urban case, KE-GNN employing a coarse mesh achieved considerable agreement with the fine LES result and was thousands of times faster. On the same coarse mesh, KE-GNN was seven times faster than a tightly converged SRANS and 280 times faster than an under-resolved LES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
刚刚
刚刚
刚刚
奋斗冬萱完成签到,获得积分10
刚刚
康园完成签到,获得积分10
1秒前
活泼的面包完成签到,获得积分10
3秒前
123456完成签到,获得积分10
4秒前
重要谷冬完成签到,获得积分10
4秒前
深情丸子发布了新的文献求助10
4秒前
4秒前
杰瑞完成签到,获得积分10
6秒前
6秒前
ding应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
fang应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
李小鑫吖发布了新的文献求助10
7秒前
ding应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
Zoe应助科研通管家采纳,获得50
8秒前
个性元枫应助科研通管家采纳,获得10
8秒前
8秒前
贰鸟应助科研通管家采纳,获得20
8秒前
华仔应助Misty_采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得30
8秒前
fang应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
fang应助科研通管家采纳,获得10
8秒前
8秒前
老阎应助科研通管家采纳,获得30
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
fang应助科研通管家采纳,获得10
8秒前
vera完成签到 ,获得积分10
8秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048