光伏系统
功率(物理)
计算机科学
人工智能
机器学习
可靠性工程
工程类
电气工程
物理
量子力学
作者
Zhijian Hou,Yunhui Zhang,Qian Liu,Xiaojiang Ye
标识
DOI:10.1016/j.egyr.2024.04.065
摘要
The increasing use of photovoltaic (PV) power generation presents a significant opportunity for global energy transformation. However, accurately forecasting PV power remains a challenge. This study proposes a hybrid approach that combines variational mode decomposition (VMD), whale optimization algorithm (WOA), and long short-term memory neural network (LSTM) to forecast photovoltaic (PV) power accurately. The model decomposes the time series of PV power using VMD to address the non-stationary nature of the time series. The VMD parameters are optimized using WOA. Subsequently, and the PV power time series data is then decomposed using the optimized VMD parameters to obtain multiple intrinsic mode functions (IMFs) components and a residual component. These components are then reconstructed with meteorological parameters to obtain the reconstructed IMF components and residuals. Finally, multiple LSTM sub-models are built, with each of them taking the IMF components and residual from the previous reconstruction as inputs. The sub-models are optimized using the WOA method to determine their hyperparameters and then constructed with these optimized hyperparameters. The predicted values of each IMF and residual are output and added for sequence reconstruction to derive the final predicted value of PV power. The model's effectiveness was verified for one-hour-ahead forecasting at the 1.8 MW solar system in Yulara, central Australia. The test results show that the proposed model outperforms other benchmark models, with mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared value (R2) of 15.247 kW, 19.753 kW, 4.405 % and 0.997, respectively. Compared to the LSTM, MAE, RMSE, and MAPE decreased by 84.942 %, 86.746 %, and 82.611 %, respectively, while R2 increased by 23.438 %. The proposed model has better predictive performance for both stable power changes and large fluctuations, essential for effectively integrating renewable energy sources into the power grid.
科研通智能强力驱动
Strongly Powered by AbleSci AI