A hybrid machine learning forecasting model for photovoltaic power

光伏系统 功率(物理) 计算机科学 人工智能 机器学习 可靠性工程 工程类 电气工程 物理 量子力学
作者
Zhijian Hou,Yunhui Zhang,Qian Liu,Xiaojiang Ye
出处
期刊:Energy Reports [Elsevier BV]
卷期号:11: 5125-5138 被引量:6
标识
DOI:10.1016/j.egyr.2024.04.065
摘要

The increasing use of photovoltaic (PV) power generation presents a significant opportunity for global energy transformation. However, accurately forecasting PV power remains a challenge. This study proposes a hybrid approach that combines variational mode decomposition (VMD), whale optimization algorithm (WOA), and long short-term memory neural network (LSTM) to forecast photovoltaic (PV) power accurately. The model decomposes the time series of PV power using VMD to address the non-stationary nature of the time series. The VMD parameters are optimized using WOA. Subsequently, and the PV power time series data is then decomposed using the optimized VMD parameters to obtain multiple intrinsic mode functions (IMFs) components and a residual component. These components are then reconstructed with meteorological parameters to obtain the reconstructed IMF components and residuals. Finally, multiple LSTM sub-models are built, with each of them taking the IMF components and residual from the previous reconstruction as inputs. The sub-models are optimized using the WOA method to determine their hyperparameters and then constructed with these optimized hyperparameters. The predicted values of each IMF and residual are output and added for sequence reconstruction to derive the final predicted value of PV power. The model's effectiveness was verified for one-hour-ahead forecasting at the 1.8 MW solar system in Yulara, central Australia. The test results show that the proposed model outperforms other benchmark models, with mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared value (R2) of 15.247 kW, 19.753 kW, 4.405 % and 0.997, respectively. Compared to the LSTM, MAE, RMSE, and MAPE decreased by 84.942 %, 86.746 %, and 82.611 %, respectively, while R2 increased by 23.438 %. The proposed model has better predictive performance for both stable power changes and large fluctuations, essential for effectively integrating renewable energy sources into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
茶柠应助夏夏子采纳,获得10
1秒前
秦川发布了新的文献求助10
2秒前
舒心完成签到,获得积分20
2秒前
FashionBoy应助Dr采纳,获得10
2秒前
gcvyxcc完成签到,获得积分20
2秒前
李佳萌发布了新的文献求助10
2秒前
2秒前
星辰大海应助lijun采纳,获得10
3秒前
3秒前
不呐呐发布了新的文献求助10
3秒前
sennialiu完成签到,获得积分10
3秒前
3秒前
打打应助獭祭鱼采纳,获得10
3秒前
4秒前
federish完成签到 ,获得积分10
4秒前
阿源完成签到,获得积分10
4秒前
origin完成签到,获得积分10
4秒前
lu完成签到 ,获得积分10
4秒前
称心问枫完成签到,获得积分10
5秒前
小L发布了新的文献求助10
5秒前
这就是你发布了新的文献求助10
5秒前
Jasper应助小伙子采纳,获得10
6秒前
nkmenghan发布了新的文献求助10
6秒前
dbsjdjb发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
7秒前
wxyshare应助波奇朵朵采纳,获得10
7秒前
科研通AI5应助派大星采纳,获得10
8秒前
阿然发布了新的文献求助10
8秒前
Owen应助奶盖采纳,获得10
8秒前
乐观芸遥完成签到,获得积分10
9秒前
谨慎青亦完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助Melody采纳,获得10
10秒前
汉堡包应助素笺生花采纳,获得10
10秒前
马冬梅发布了新的文献求助10
10秒前
肖sir666发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893