A hybrid machine learning forecasting model for photovoltaic power

光伏系统 功率(物理) 计算机科学 人工智能 机器学习 可靠性工程 工程类 电气工程 物理 量子力学
作者
Zhijian Hou,Yunhui Zhang,Qian Liu,Xiaojiang Ye
出处
期刊:Energy Reports [Elsevier BV]
卷期号:11: 5125-5138 被引量:6
标识
DOI:10.1016/j.egyr.2024.04.065
摘要

The increasing use of photovoltaic (PV) power generation presents a significant opportunity for global energy transformation. However, accurately forecasting PV power remains a challenge. This study proposes a hybrid approach that combines variational mode decomposition (VMD), whale optimization algorithm (WOA), and long short-term memory neural network (LSTM) to forecast photovoltaic (PV) power accurately. The model decomposes the time series of PV power using VMD to address the non-stationary nature of the time series. The VMD parameters are optimized using WOA. Subsequently, and the PV power time series data is then decomposed using the optimized VMD parameters to obtain multiple intrinsic mode functions (IMFs) components and a residual component. These components are then reconstructed with meteorological parameters to obtain the reconstructed IMF components and residuals. Finally, multiple LSTM sub-models are built, with each of them taking the IMF components and residual from the previous reconstruction as inputs. The sub-models are optimized using the WOA method to determine their hyperparameters and then constructed with these optimized hyperparameters. The predicted values of each IMF and residual are output and added for sequence reconstruction to derive the final predicted value of PV power. The model's effectiveness was verified for one-hour-ahead forecasting at the 1.8 MW solar system in Yulara, central Australia. The test results show that the proposed model outperforms other benchmark models, with mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared value (R2) of 15.247 kW, 19.753 kW, 4.405 % and 0.997, respectively. Compared to the LSTM, MAE, RMSE, and MAPE decreased by 84.942 %, 86.746 %, and 82.611 %, respectively, while R2 increased by 23.438 %. The proposed model has better predictive performance for both stable power changes and large fluctuations, essential for effectively integrating renewable energy sources into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rubby完成签到,获得积分10
刚刚
ljy2015完成签到,获得积分10
刚刚
刚刚
音悦台发布了新的文献求助10
1秒前
单纯乞完成签到,获得积分10
2秒前
冷静傲丝完成签到 ,获得积分10
2秒前
平凡发布了新的文献求助10
2秒前
平常的雁凡完成签到,获得积分20
2秒前
Wonder完成签到,获得积分10
3秒前
4秒前
抗体开开开开发给抗体开开开开发的求助进行了留言
4秒前
墨123发布了新的文献求助10
4秒前
欢喜若男完成签到,获得积分10
5秒前
5秒前
时尚半仙完成签到 ,获得积分10
6秒前
顺利的乐枫完成签到 ,获得积分10
6秒前
1111应助小王同学搞学术采纳,获得10
7秒前
烨娴完成签到,获得积分10
8秒前
小七完成签到,获得积分10
8秒前
9秒前
lilei完成签到,获得积分10
10秒前
Chamsel完成签到,获得积分10
10秒前
shrimp5215驳回了JW应助
11秒前
北落完成签到 ,获得积分10
11秒前
雪雪完成签到 ,获得积分10
12秒前
12秒前
feixue完成签到,获得积分10
12秒前
深情安青应助ybwei2008_163采纳,获得10
12秒前
吃土豆的番茄完成签到,获得积分10
12秒前
xiaoqianqian174完成签到,获得积分10
12秒前
Tough完成签到 ,获得积分10
13秒前
wen完成签到,获得积分10
14秒前
K珑完成签到,获得积分10
14秒前
小米粒完成签到,获得积分10
15秒前
仇凌寒完成签到,获得积分10
15秒前
15秒前
wry发布了新的文献求助10
15秒前
在水一方应助甜蜜绿蓉采纳,获得10
15秒前
15秒前
HE关闭了HE文献求助
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478