A hybrid machine learning forecasting model for photovoltaic power

光伏系统 功率(物理) 计算机科学 人工智能 机器学习 可靠性工程 工程类 电气工程 物理 量子力学
作者
Zhijian Hou,Yunhui Zhang,Qian Liu,Xiaojiang Ye
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 5125-5138 被引量:6
标识
DOI:10.1016/j.egyr.2024.04.065
摘要

The increasing use of photovoltaic (PV) power generation presents a significant opportunity for global energy transformation. However, accurately forecasting PV power remains a challenge. This study proposes a hybrid approach that combines variational mode decomposition (VMD), whale optimization algorithm (WOA), and long short-term memory neural network (LSTM) to forecast photovoltaic (PV) power accurately. The model decomposes the time series of PV power using VMD to address the non-stationary nature of the time series. The VMD parameters are optimized using WOA. Subsequently, and the PV power time series data is then decomposed using the optimized VMD parameters to obtain multiple intrinsic mode functions (IMFs) components and a residual component. These components are then reconstructed with meteorological parameters to obtain the reconstructed IMF components and residuals. Finally, multiple LSTM sub-models are built, with each of them taking the IMF components and residual from the previous reconstruction as inputs. The sub-models are optimized using the WOA method to determine their hyperparameters and then constructed with these optimized hyperparameters. The predicted values of each IMF and residual are output and added for sequence reconstruction to derive the final predicted value of PV power. The model's effectiveness was verified for one-hour-ahead forecasting at the 1.8 MW solar system in Yulara, central Australia. The test results show that the proposed model outperforms other benchmark models, with mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared value (R2) of 15.247 kW, 19.753 kW, 4.405 % and 0.997, respectively. Compared to the LSTM, MAE, RMSE, and MAPE decreased by 84.942 %, 86.746 %, and 82.611 %, respectively, while R2 increased by 23.438 %. The proposed model has better predictive performance for both stable power changes and large fluctuations, essential for effectively integrating renewable energy sources into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理千雁发布了新的文献求助10
1秒前
lyon完成签到,获得积分10
1秒前
细心寒凡发布了新的文献求助10
2秒前
LL完成签到 ,获得积分10
2秒前
潇湘雪月发布了新的文献求助10
3秒前
香蕉觅云应助嘻嘻子采纳,获得10
3秒前
4秒前
电池高手完成签到,获得积分10
5秒前
5秒前
CipherSage应助半芹采纳,获得10
5秒前
5秒前
5秒前
sss完成签到,获得积分20
6秒前
完美世界应助淳之风采纳,获得10
6秒前
pluto应助amber采纳,获得10
6秒前
minghanl发布了新的文献求助10
6秒前
7秒前
Peng完成签到,获得积分10
7秒前
脑洞疼应助ceci采纳,获得10
8秒前
8秒前
orixero应助小鱼采纳,获得10
8秒前
可靠的书桃应助weixun采纳,获得10
8秒前
9秒前
充电宝应助乐乐乐乐呀采纳,获得10
10秒前
lululala发布了新的文献求助10
10秒前
77发布了新的文献求助10
10秒前
11秒前
细心寒凡完成签到 ,获得积分10
12秒前
12秒前
坦率邪欢发布了新的文献求助10
12秒前
13秒前
shelter发布了新的文献求助30
13秒前
锂安发布了新的文献求助10
13秒前
13秒前
Titi完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
共享精神应助123采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721