A hybrid machine learning forecasting model for photovoltaic power

光伏系统 功率(物理) 计算机科学 人工智能 机器学习 可靠性工程 工程类 电气工程 物理 量子力学
作者
Zhijian Hou,Yunhui Zhang,Qian Liu,Xiaojiang Ye
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 5125-5138 被引量:27
标识
DOI:10.1016/j.egyr.2024.04.065
摘要

The increasing use of photovoltaic (PV) power generation presents a significant opportunity for global energy transformation. However, accurately forecasting PV power remains a challenge. This study proposes a hybrid approach that combines variational mode decomposition (VMD), whale optimization algorithm (WOA), and long short-term memory neural network (LSTM) to forecast photovoltaic (PV) power accurately. The model decomposes the time series of PV power using VMD to address the non-stationary nature of the time series. The VMD parameters are optimized using WOA. Subsequently, and the PV power time series data is then decomposed using the optimized VMD parameters to obtain multiple intrinsic mode functions (IMFs) components and a residual component. These components are then reconstructed with meteorological parameters to obtain the reconstructed IMF components and residuals. Finally, multiple LSTM sub-models are built, with each of them taking the IMF components and residual from the previous reconstruction as inputs. The sub-models are optimized using the WOA method to determine their hyperparameters and then constructed with these optimized hyperparameters. The predicted values of each IMF and residual are output and added for sequence reconstruction to derive the final predicted value of PV power. The model's effectiveness was verified for one-hour-ahead forecasting at the 1.8 MW solar system in Yulara, central Australia. The test results show that the proposed model outperforms other benchmark models, with mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared value (R2) of 15.247 kW, 19.753 kW, 4.405 % and 0.997, respectively. Compared to the LSTM, MAE, RMSE, and MAPE decreased by 84.942 %, 86.746 %, and 82.611 %, respectively, while R2 increased by 23.438 %. The proposed model has better predictive performance for both stable power changes and large fluctuations, essential for effectively integrating renewable energy sources into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助自由南珍采纳,获得10
1秒前
苹果煎饼完成签到,获得积分10
2秒前
2秒前
杨小冬发布了新的文献求助10
2秒前
倒霉蛋完成签到,获得积分10
3秒前
庄严发布了新的文献求助10
3秒前
2401发布了新的文献求助10
3秒前
3秒前
3秒前
zhaoqing完成签到,获得积分10
4秒前
4秒前
充电宝应助han采纳,获得10
5秒前
6秒前
ajiduo发布了新的文献求助10
7秒前
聿潇发布了新的文献求助10
8秒前
8秒前
华枝春满发布了新的文献求助10
8秒前
Islet1810发布了新的文献求助10
9秒前
9秒前
两米七发布了新的文献求助20
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
清脆青槐完成签到 ,获得积分10
13秒前
舒适花瓣发布了新的文献求助10
13秒前
luwenbin发布了新的文献求助10
14秒前
丘比特应助YF采纳,获得10
15秒前
游悠悠发布了新的文献求助10
16秒前
16秒前
风趣飞柏发布了新的文献求助10
16秒前
han发布了新的文献求助10
16秒前
劳恩特应助熊芳妮采纳,获得30
17秒前
wangyang完成签到 ,获得积分10
17秒前
17秒前
爆米花应助tao采纳,获得80
17秒前
17秒前
小心胖虎完成签到,获得积分20
18秒前
18秒前
dong0511发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294