A hybrid machine learning forecasting model for photovoltaic power

光伏系统 功率(物理) 计算机科学 人工智能 机器学习 可靠性工程 工程类 电气工程 物理 量子力学
作者
Zhijian Hou,Yunhui Zhang,Qian Liu,Xiaojiang Ye
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 5125-5138 被引量:6
标识
DOI:10.1016/j.egyr.2024.04.065
摘要

The increasing use of photovoltaic (PV) power generation presents a significant opportunity for global energy transformation. However, accurately forecasting PV power remains a challenge. This study proposes a hybrid approach that combines variational mode decomposition (VMD), whale optimization algorithm (WOA), and long short-term memory neural network (LSTM) to forecast photovoltaic (PV) power accurately. The model decomposes the time series of PV power using VMD to address the non-stationary nature of the time series. The VMD parameters are optimized using WOA. Subsequently, and the PV power time series data is then decomposed using the optimized VMD parameters to obtain multiple intrinsic mode functions (IMFs) components and a residual component. These components are then reconstructed with meteorological parameters to obtain the reconstructed IMF components and residuals. Finally, multiple LSTM sub-models are built, with each of them taking the IMF components and residual from the previous reconstruction as inputs. The sub-models are optimized using the WOA method to determine their hyperparameters and then constructed with these optimized hyperparameters. The predicted values of each IMF and residual are output and added for sequence reconstruction to derive the final predicted value of PV power. The model's effectiveness was verified for one-hour-ahead forecasting at the 1.8 MW solar system in Yulara, central Australia. The test results show that the proposed model outperforms other benchmark models, with mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared value (R2) of 15.247 kW, 19.753 kW, 4.405 % and 0.997, respectively. Compared to the LSTM, MAE, RMSE, and MAPE decreased by 84.942 %, 86.746 %, and 82.611 %, respectively, while R2 increased by 23.438 %. The proposed model has better predictive performance for both stable power changes and large fluctuations, essential for effectively integrating renewable energy sources into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助细心映寒采纳,获得10
刚刚
灬乔发布了新的文献求助30
刚刚
刚刚
刚刚
西西的瓜皮皮完成签到,获得积分20
1秒前
1秒前
善良友安完成签到,获得积分10
2秒前
研友_VZG7GZ应助Xxaaa采纳,获得10
3秒前
4秒前
4秒前
4秒前
段段完成签到,获得积分10
4秒前
Dddd发布了新的文献求助10
5秒前
hahah发布了新的文献求助10
6秒前
yep完成签到,获得积分10
6秒前
gguc发布了新的文献求助10
6秒前
大个应助yyy采纳,获得10
7秒前
你爹完成签到,获得积分10
7秒前
鳗鱼鞋垫完成签到 ,获得积分10
7秒前
dong发布了新的文献求助30
7秒前
8秒前
Lin发布了新的文献求助10
8秒前
Ll发布了新的文献求助50
8秒前
9秒前
晚风发布了新的文献求助10
9秒前
zjuroc发布了新的文献求助20
10秒前
坦率的松发布了新的文献求助10
10秒前
xiaokai完成签到,获得积分10
10秒前
10秒前
10秒前
Czy完成签到,获得积分10
10秒前
11秒前
小满完成签到,获得积分10
11秒前
文忉嫣完成签到,获得积分10
11秒前
11秒前
12秒前
落后秋柳完成签到,获得积分20
12秒前
Akim应助zz采纳,获得10
12秒前
13秒前
三九发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762