Classification of Cervical Lesions Based on Multimodal Features Fusion

阴道镜检查 计算机科学 病变 人工智能 宫颈癌 鳞状上皮内病变 医学 分割 特征(语言学) 宫颈上皮内瘤变 模式识别(心理学) 癌症 病理 内科学 语言学 哲学
作者
Jing Li,Peng Hu,Huayu Gao,Nanyan Shen,Keqin Hua
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108589-108589 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108589
摘要

Cervical cancer is a severe threat to women's health worldwide with a long cancerous cycle and a clear etiology, making early screening vital for the prevention and treatment. Based on the dataset provided by the Obstetrics and Gynecology Hospital of Fudan University, a four-category classification model for cervical lesions including Normal, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL) and cancer (Ca) is developed. Considering the dataset characteristics, to fully utilize the research data and ensure the dataset size, the model inputs include original and acetic colposcopy images, lesion segmentation masks, human papillomavirus (HPV), thinprep cytologic test (TCT) and age, but exclude iodine images that have a significant overlap with lesions under acetic images. Firstly, the change information between original and acetic images is introduced by calculating the acetowhite opacity to mine the correlation between the acetowhite thickness and lesion grades. Secondly, the lesion segmentation masks are utilized to introduce prior knowledge of lesion location and shape into the classification model. Lastly, a cross-modal feature fusion module based on the self-attention mechanism is utilized to fuse image information with clinical text information, revealing the features correlation. Based on the dataset used in this study, the proposed model is comprehensively compared with five excellent models over the past three years, demonstrating that the proposed model has superior classification performance and a better balance between performance and complexity. The modules ablation experiments further prove that each proposed improved module can independently improve the model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代苠完成签到,获得积分20
1秒前
专注的月亮完成签到,获得积分10
1秒前
传奇3应助深情映冬采纳,获得10
1秒前
2秒前
复杂元瑶完成签到,获得积分20
2秒前
寒冷诗霜完成签到,获得积分10
2秒前
可可西完成签到,获得积分10
2秒前
3秒前
Xiaoshen完成签到,获得积分10
3秒前
3秒前
3秒前
善良的硬币完成签到,获得积分10
3秒前
4秒前
青寻完成签到,获得积分10
4秒前
毛毛球应助现代苠采纳,获得10
5秒前
田様应助一昂杨采纳,获得44
5秒前
sens发布了新的文献求助10
6秒前
跳跃的幻嫣完成签到,获得积分10
6秒前
6秒前
宋宋完成签到,获得积分10
6秒前
科研通AI5应助心灵美慕凝采纳,获得30
7秒前
所所应助光亮映之采纳,获得10
7秒前
7秒前
开朗的又亦完成签到,获得积分10
8秒前
8秒前
wj关注了科研通微信公众号
8秒前
不想开组会完成签到,获得积分10
9秒前
Hany发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
Andywong发布了新的文献求助30
10秒前
jj完成签到,获得积分10
11秒前
11秒前
rui完成签到,获得积分10
12秒前
深情映冬发布了新的文献求助10
12秒前
科研通AI5应助Aprilapple采纳,获得10
13秒前
Wwqqq发布了新的文献求助10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546676
求助须知:如何正确求助?哪些是违规求助? 3123726
关于积分的说明 9356475
捐赠科研通 2822353
什么是DOI,文献DOI怎么找? 1551369
邀请新用户注册赠送积分活动 723332
科研通“疑难数据库(出版商)”最低求助积分说明 713721