Strengthening LLM ecosystem security: Preventing mobile malware from manipulating LLM-based applications

计算机科学 恶意软件 计算机安全 移动恶意软件 生态系统 生态学 生物
作者
Lu Huang,Jingfeng Xue,Yong Wang,Junbao Chen,Tianwei Lei
出处
期刊:Information Sciences [Elsevier BV]
卷期号:: 120923-120923 被引量:3
标识
DOI:10.1016/j.ins.2024.120923
摘要

Large language model (LLM) platform vendors have begun to make their models available for developers to build for different use cases. However, the emergence of LLM-based applications may raise security and privacy issues, and even LLM-based applications may be susceptible to malware. To strengthen LLM ecosystem security, it's crucial to develop malware detection algorithms for various platforms. We pay attention to Android malware because the Android platform is widely used and vulnerable. Existing single feature based-solutions cannot effectively describe applications, and aged models fail to detect new malware as Android platform develops and malware evolves. Therefore, existing detection methods are ill-suited for evolved malware that may manipulate LLM-based applications. To tackle the above problems, we design EvolveDroid, an anti-aging Android malware detection system. On the one hand, EvolveDroid utilizes different view features to reflect malware behavior from multiple dimensions, and maximizes the advantages of each feature type through feature aggregation. On the other hand, EvolveDroid learns good representation of applications through contrastive learning and generates pseudo labels by measuring the distance between unknown samples and existing samples for model updating. Extensive evaluations show that EvolveDroid outperforms state-of-the-art (sota) solutions in detection performance and slowing model aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
129600发布了新的文献求助10
1秒前
2秒前
3秒前
科研通AI2S应助wang采纳,获得30
5秒前
WWWXM发布了新的文献求助10
5秒前
5秒前
小栋完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
8秒前
sci帝国完成签到,获得积分10
9秒前
oihqerg应助YYY采纳,获得10
9秒前
赘婿应助Mat采纳,获得10
10秒前
Lee发布了新的文献求助10
10秒前
11秒前
sci帝国发布了新的文献求助10
11秒前
科研通AI5应助独角兽先生采纳,获得10
13秒前
13秒前
15秒前
majm完成签到,获得积分10
15秒前
wzh发布了新的文献求助20
19秒前
Lee关闭了Lee文献求助
19秒前
baihy完成签到,获得积分20
19秒前
sam发布了新的文献求助10
19秒前
烟花应助majm采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
zpc应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
21秒前
快乐太英发布了新的文献求助10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
21秒前
爆米花应助科研通管家采纳,获得30
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732936
求助须知:如何正确求助?哪些是违规求助? 3277104
关于积分的说明 10000653
捐赠科研通 2992842
什么是DOI,文献DOI怎么找? 1642467
邀请新用户注册赠送积分活动 780432
科研通“疑难数据库(出版商)”最低求助积分说明 748816