已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reversible negative compressibility metamaterials inspired by braess's paradox

超材料 压缩性 材料科学 计算机科学 物理 机械 光电子学
作者
Jinmeng Zha,Zhen Zhang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (7): 075036-075036 被引量:1
标识
DOI:10.1088/1361-665x/ad59e6
摘要

Abstract Negative compressibility metamaterials have attracted significant attention due to their distinctive properties and promising applications. Negative compressibility has been interpreted in two ways. Regarding the negative compressibility induced by a uniaxial load, it can only occur abruptly when the load reaches a certain threshold. Hence, it can be termed as transient negative compressibility. However, fabrication and experiments of such metamaterials have rarely been reported. Herein, we demonstrate them. Inspired by Braess’s paradox, a novel mechanical model is proposed with reversible negative compressibility. It shows multiple types of force responses during a loading-unloading cycle, including transient negative compressibility and hysteresis. Phase diagrams are employed to visualize the relationship between force responses and system parameters. Besides, explicit expressions for the conditions and intensity of negative compressibility are obtained for design and optimization. The model replacement method inspired by compliant mechanism design is then introduced to derive specific unit cell structures, thus avoiding intuition-based approaches. Additive manufacturing technology is utilized to fabricate the prototypes, and negative compressibility is validated via simulations and experiments. Furthermore, it is demonstrated that metamaterials with transient negative compressibility can be activated through electrical heating and can function as actuators, thereby possessing machine-like properties. The proposed mechanical metamaterial and the introduced design methodology have potentials to impact micro-electromechanical systems, force sensors, protective devices, and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
8秒前
果汁完成签到 ,获得积分10
8秒前
aidiresi发布了新的文献求助10
12秒前
可爱的函函应助柒月采纳,获得10
18秒前
20秒前
小贾爱喝冰美式完成签到 ,获得积分10
21秒前
丰知然应助hyhyhyhy采纳,获得10
22秒前
老婆婆发布了新的文献求助10
24秒前
25秒前
aidiresi完成签到,获得积分20
26秒前
斯文败类应助12采纳,获得10
27秒前
27秒前
30秒前
科研通AI2S应助hyhyhyhy采纳,获得10
30秒前
吃吃菜菜吧完成签到 ,获得积分10
37秒前
bingxinl应助hyhyhyhy采纳,获得10
38秒前
快乐嚓茶完成签到 ,获得积分10
39秒前
老婆婆完成签到,获得积分10
40秒前
缓存完成签到 ,获得积分10
42秒前
顾矜应助nenoaowu采纳,获得10
43秒前
44秒前
研友_VZG7GZ应助月月采纳,获得10
46秒前
毛豆应助hyhyhyhy采纳,获得10
47秒前
迷人的Jack发布了新的文献求助10
48秒前
搜集达人应助suxin采纳,获得10
48秒前
峰回路转发布了新的文献求助30
49秒前
简单小懒虫完成签到 ,获得积分10
54秒前
zebra完成签到 ,获得积分10
54秒前
orixero应助傲娇的大字奶采纳,获得10
55秒前
57秒前
科研通AI2S应助hyhyhyhy采纳,获得10
57秒前
迷人的Jack完成签到,获得积分20
57秒前
59秒前
1分钟前
清新的音响完成签到 ,获得积分10
1分钟前
1分钟前
Hello应助mmyhn采纳,获得10
1分钟前
脚踏实地呢完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310970
求助须知:如何正确求助?哪些是违规求助? 2943774
关于积分的说明 8516369
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431916
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649777