亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Topological 3D reconstruction of multiple anatomical structures from volumetric medical data

计算机科学 拓扑(电路) 人工智能 拓扑数据分析 计算机视觉 算法 数学 组合数学
作者
Sylvain Gerbaud,Albert R. Cavalier,Sébastien Horna,Rita Zrour,Mathieu Naudin,Carole Guillevin,Philippe Meseure
出处
期刊:Computers & Graphics [Elsevier BV]
卷期号:121: 103947-103947
标识
DOI:10.1016/j.cag.2024.103947
摘要

In the medical field, usually, practitioners mainly base their analysis on 2D slices produced from MRI or CT-scans that correspond to restricted views of a pathology. To facilitate the work of doctors, increase diagnostic accuracy and cross-reference multimodal data, a 3D reconstruction is required. However, most of the time, reconstruction methods fail at visualizing complex and noisy data made up of several tissues. Indeed, these methods often build each tissue independently so that the consistency of the global model is not ensured: overlaps may appear between segments whereas some disjointed volumes exhibit empty spaces. This paper presents a complete topologically consistent reconstruction system from 3D medical acquisitions such as MRI or CT-scans. Compared to other methods, our system offers a single volumetric representation of an organ corresponding to a 3D space partition, where a semantic label is associated to each volume to identify the represented tissue and adjacency between volumes is explicitly and precisely defined. This partition is controlled and free from topological and geometric defects usually found in other 3D reconstruction approaches. Experimental studies were conducted on MRI datasets of brains resulting in consistent reconstructions. An application of the model for calculating the distribution of physiological data in brain tissue is also shown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助qls123采纳,获得10
18秒前
qls123完成签到,获得积分10
25秒前
26秒前
30秒前
35秒前
岸在海的深处完成签到 ,获得积分10
35秒前
39秒前
40秒前
qls123发布了新的文献求助10
43秒前
49秒前
千山暮雪发布了新的文献求助10
54秒前
xx完成签到 ,获得积分10
55秒前
捉迷藏完成签到,获得积分0
1分钟前
guoze完成签到,获得积分10
1分钟前
NexusExplorer应助千山暮雪采纳,获得30
1分钟前
wsw驳回了orixero应助
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
dopamine完成签到,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
1分钟前
半城微凉应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
孜然味的拜拜肉完成签到,获得积分10
2分钟前
2分钟前
wsw发布了新的文献求助10
2分钟前
yi完成签到 ,获得积分10
2分钟前
2分钟前
张小美发布了新的文献求助10
2分钟前
张小美完成签到,获得积分10
2分钟前
xixi关注了科研通微信公众号
2分钟前
清爽的机器猫完成签到 ,获得积分10
3分钟前
3分钟前
漂南仰完成签到,获得积分10
3分钟前
李爱国应助嗯哼哈哈采纳,获得10
3分钟前
3分钟前
嗯哼哈哈发布了新的文献求助10
3分钟前
3分钟前
天天快乐应助迷路雁采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214