Topological 3D reconstruction of multiple anatomical structures from volumetric medical data

计算机科学 拓扑(电路) 人工智能 拓扑数据分析 计算机视觉 算法 数学 组合数学
作者
Sylvain Gerbaud,Albert R. Cavalier,Sébastien Horna,Rita Zrour,Mathieu Naudin,Carole Guillevin,Philippe Meseure
出处
期刊:Computers & Graphics [Elsevier]
卷期号:121: 103947-103947
标识
DOI:10.1016/j.cag.2024.103947
摘要

In the medical field, usually, practitioners mainly base their analysis on 2D slices produced from MRI or CT-scans that correspond to restricted views of a pathology. To facilitate the work of doctors, increase diagnostic accuracy and cross-reference multimodal data, a 3D reconstruction is required. However, most of the time, reconstruction methods fail at visualizing complex and noisy data made up of several tissues. Indeed, these methods often build each tissue independently so that the consistency of the global model is not ensured: overlaps may appear between segments whereas some disjointed volumes exhibit empty spaces. This paper presents a complete topologically consistent reconstruction system from 3D medical acquisitions such as MRI or CT-scans. Compared to other methods, our system offers a single volumetric representation of an organ corresponding to a 3D space partition, where a semantic label is associated to each volume to identify the represented tissue and adjacency between volumes is explicitly and precisely defined. This partition is controlled and free from topological and geometric defects usually found in other 3D reconstruction approaches. Experimental studies were conducted on MRI datasets of brains resulting in consistent reconstructions. An application of the model for calculating the distribution of physiological data in brain tissue is also shown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prosperp应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
Enso完成签到 ,获得积分10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
难过的翎应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
中级中级发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
丸子完成签到,获得积分10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
难过的翎应助科研通管家采纳,获得10
1秒前
飞快的语蕊完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
小蘑菇应助xqwwqx采纳,获得10
2秒前
情怀应助沙111采纳,获得10
2秒前
shelly0621发布了新的文献求助10
3秒前
顾暖完成签到,获得积分10
3秒前
JamesPei应助Dddd采纳,获得10
3秒前
kkkkkw完成签到,获得积分10
4秒前
搜文献的北北完成签到,获得积分10
4秒前
4秒前
starryxm发布了新的文献求助10
4秒前
tian完成签到,获得积分10
5秒前
5秒前
zzx完成签到 ,获得积分10
5秒前
6秒前
深情安青应助DDTT采纳,获得10
6秒前
taozidetao完成签到 ,获得积分10
6秒前
共享精神应助犹豫帆布鞋采纳,获得10
6秒前
小欧文完成签到,获得积分10
6秒前
nasya完成签到,获得积分10
7秒前
neo发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678