Artificial Intelligence–enabled Decision Support in Surgery

医学 梅德林 样本量测定 指南 样品(材料) 临床决策支持系统 决策支持系统 医学物理学 人工智能 统计 计算机科学 病理 数学 政治学 法学 化学 色谱法
作者
Tyler J. Loftus,Maria S. Altieri,Jeremy A. Balch,Kenneth L. Abbott,Jeff Choi,Jayson S. Marwaha,Daniel A. Hashimoto,Gabriel A. Brat,Yannis Raftopoulos,Heather L. Evans,Gretchen Purcell Jackson,Danielle S. Walsh,Christopher J. Tignanelli
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:278 (1): 51-58 被引量:23
标识
DOI:10.1097/sla.0000000000005853
摘要

Objective: To summarize state-of-the-art artificial intelligence–enabled decision support in surgery and to quantify deficiencies in scientific rigor and reporting. Background: To positively affect surgical care, decision-support models must exceed current reporting guideline requirements by performing external and real-time validation, enrolling adequate sample sizes, reporting model precision, assessing performance across vulnerable populations, and achieving clinical implementation; the degree to which published models meet these criteria is unknown. Methods: Embase, PubMed, and MEDLINE databases were searched from their inception to September 21, 2022 for articles describing artificial intelligence–enabled decision support in surgery that uses preoperative or intraoperative data elements to predict complications within 90 days of surgery. Scientific rigor and reporting criteria were assessed and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Results: Sample size ranged from 163–2,882,526, with 8/36 articles (22.2%) featuring sample sizes of less than 2000; 7 of these 8 articles (87.5%) had below-average (<0.83) area under the receiver operating characteristic or accuracy. Overall, 29 articles (80.6%) performed internal validation only, 5 (13.8%) performed external validation, and 2 (5.6%) performed real-time validation. Twenty-three articles (63.9%) reported precision. No articles reported performance across sociodemographic categories. Thirteen articles (36.1%) presented a framework that could be used for clinical implementation; none assessed clinical implementation efficacy. Conclusions: Artificial intelligence–enabled decision support in surgery is limited by reliance on internal validation, small sample sizes that risk overfitting and sacrifice predictive performance, and failure to report confidence intervals, precision, equity analyses, and clinical implementation. Researchers should strive to improve scientific quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SWD完成签到,获得积分10
刚刚
会飞的生菜完成签到 ,获得积分10
刚刚
1秒前
1秒前
飞翔的霸天哥应助未知采纳,获得30
1秒前
在水一方应助默默听双采纳,获得10
2秒前
s1mple完成签到,获得积分10
2秒前
2秒前
2秒前
共享精神应助Yoyo采纳,获得10
3秒前
情怀应助指北针采纳,获得10
4秒前
4秒前
失眠鸭完成签到,获得积分10
4秒前
yznfly应助zyx采纳,获得20
4秒前
5秒前
5秒前
贪玩心情发布了新的文献求助10
5秒前
6秒前
坚强的曼雁完成签到,获得积分10
6秒前
jiu完成签到,获得积分10
6秒前
6秒前
大鸣王潮发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
chenjie发布了新的文献求助10
8秒前
等待雅寒完成签到,获得积分10
8秒前
香蕉觅云应助daydreamammaking采纳,获得10
8秒前
科研通AI6应助欢呼的小玉采纳,获得30
8秒前
9秒前
cxyyy完成签到,获得积分10
9秒前
9秒前
结实的元灵完成签到,获得积分10
9秒前
10秒前
哆啦A梦发布了新的文献求助10
10秒前
10秒前
彳亍1117应助gao采纳,获得10
10秒前
文静的柚子完成签到,获得积分10
10秒前
min完成签到,获得积分20
11秒前
11秒前
伶俐骁发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207