Artificial Intelligence–enabled Decision Support in Surgery

医学 梅德林 样本量测定 指南 样品(材料) 临床决策支持系统 决策支持系统 医学物理学 人工智能 统计 计算机科学 病理 政治学 色谱法 化学 法学 数学
作者
Tyler J. Loftus,Maria S. Altieri,Jeremy A. Balch,Kenneth L. Abbott,Jeff Choi,Jayson S. Marwaha,Daniel A. Hashimoto,Gabriel A. Brat,Yannis Raftopoulos,Heather L. Evans,Gretchen Purcell Jackson,Danielle S. Walsh,Christopher J. Tignanelli
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:278 (1): 51-58 被引量:23
标识
DOI:10.1097/sla.0000000000005853
摘要

Objective: To summarize state-of-the-art artificial intelligence–enabled decision support in surgery and to quantify deficiencies in scientific rigor and reporting. Background: To positively affect surgical care, decision-support models must exceed current reporting guideline requirements by performing external and real-time validation, enrolling adequate sample sizes, reporting model precision, assessing performance across vulnerable populations, and achieving clinical implementation; the degree to which published models meet these criteria is unknown. Methods: Embase, PubMed, and MEDLINE databases were searched from their inception to September 21, 2022 for articles describing artificial intelligence–enabled decision support in surgery that uses preoperative or intraoperative data elements to predict complications within 90 days of surgery. Scientific rigor and reporting criteria were assessed and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Results: Sample size ranged from 163–2,882,526, with 8/36 articles (22.2%) featuring sample sizes of less than 2000; 7 of these 8 articles (87.5%) had below-average (<0.83) area under the receiver operating characteristic or accuracy. Overall, 29 articles (80.6%) performed internal validation only, 5 (13.8%) performed external validation, and 2 (5.6%) performed real-time validation. Twenty-three articles (63.9%) reported precision. No articles reported performance across sociodemographic categories. Thirteen articles (36.1%) presented a framework that could be used for clinical implementation; none assessed clinical implementation efficacy. Conclusions: Artificial intelligence–enabled decision support in surgery is limited by reliance on internal validation, small sample sizes that risk overfitting and sacrifice predictive performance, and failure to report confidence intervals, precision, equity analyses, and clinical implementation. Researchers should strive to improve scientific quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
solution完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
LJ_2完成签到 ,获得积分10
14秒前
乾乾完成签到,获得积分10
16秒前
Axs完成签到,获得积分10
17秒前
20秒前
Beyond095完成签到 ,获得积分10
22秒前
Kkkk完成签到 ,获得积分10
22秒前
ppapp完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
25秒前
zjh完成签到 ,获得积分10
27秒前
33秒前
量子星尘发布了新的文献求助10
34秒前
pengyh8完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
39秒前
泥嚎完成签到,获得积分10
41秒前
652183758完成签到 ,获得积分10
45秒前
香蕉新儿完成签到,获得积分10
45秒前
48秒前
48秒前
48秒前
48秒前
安鹏应助科研通管家采纳,获得10
48秒前
隐形曼青应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
48秒前
安鹏应助科研通管家采纳,获得10
48秒前
48秒前
51秒前
科研通AI6.1应助小晴天采纳,获得80
54秒前
量子星尘发布了新的文献求助10
57秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小晴天发布了新的文献求助80
1分钟前
鸭鸭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773288
求助须知:如何正确求助?哪些是违规求助? 5609323
关于积分的说明 15430767
捐赠科研通 4905836
什么是DOI,文献DOI怎么找? 2639845
邀请新用户注册赠送积分活动 1587745
关于科研通互助平台的介绍 1542740