Artificial Intelligence–enabled Decision Support in Surgery

医学 梅德林 样本量测定 指南 样品(材料) 临床决策支持系统 决策支持系统 医学物理学 人工智能 统计 计算机科学 病理 数学 政治学 法学 化学 色谱法
作者
Tyler J. Loftus,Maria S. Altieri,Jeremy A. Balch,Kenneth L. Abbott,Jeff Choi,Jayson S. Marwaha,Daniel A. Hashimoto,Gabriel A. Brat,Yannis Raftopoulos,Heather L. Evans,Gretchen Purcell Jackson,Danielle S. Walsh,Christopher J. Tignanelli
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:278 (1): 51-58 被引量:23
标识
DOI:10.1097/sla.0000000000005853
摘要

Objective: To summarize state-of-the-art artificial intelligence–enabled decision support in surgery and to quantify deficiencies in scientific rigor and reporting. Background: To positively affect surgical care, decision-support models must exceed current reporting guideline requirements by performing external and real-time validation, enrolling adequate sample sizes, reporting model precision, assessing performance across vulnerable populations, and achieving clinical implementation; the degree to which published models meet these criteria is unknown. Methods: Embase, PubMed, and MEDLINE databases were searched from their inception to September 21, 2022 for articles describing artificial intelligence–enabled decision support in surgery that uses preoperative or intraoperative data elements to predict complications within 90 days of surgery. Scientific rigor and reporting criteria were assessed and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Results: Sample size ranged from 163–2,882,526, with 8/36 articles (22.2%) featuring sample sizes of less than 2000; 7 of these 8 articles (87.5%) had below-average (<0.83) area under the receiver operating characteristic or accuracy. Overall, 29 articles (80.6%) performed internal validation only, 5 (13.8%) performed external validation, and 2 (5.6%) performed real-time validation. Twenty-three articles (63.9%) reported precision. No articles reported performance across sociodemographic categories. Thirteen articles (36.1%) presented a framework that could be used for clinical implementation; none assessed clinical implementation efficacy. Conclusions: Artificial intelligence–enabled decision support in surgery is limited by reliance on internal validation, small sample sizes that risk overfitting and sacrifice predictive performance, and failure to report confidence intervals, precision, equity analyses, and clinical implementation. Researchers should strive to improve scientific quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到 ,获得积分10
1秒前
3秒前
唐jie完成签到 ,获得积分10
3秒前
贝塔完成签到 ,获得积分10
4秒前
第五轻柔完成签到,获得积分10
4秒前
beiwei完成签到 ,获得积分10
4秒前
科研通AI6应助ant采纳,获得10
5秒前
chenhua5460完成签到,获得积分10
5秒前
zyw发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
蒋大少完成签到 ,获得积分10
7秒前
Ariel完成签到,获得积分10
8秒前
靓丽奇迹完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
17312852068发布了新的文献求助10
14秒前
colddie发布了新的文献求助10
15秒前
小恐龙完成签到,获得积分10
16秒前
16秒前
16秒前
無端完成签到 ,获得积分10
16秒前
17秒前
17秒前
CJX发布了新的文献求助10
18秒前
Xixi完成签到 ,获得积分10
20秒前
大力蚂蚁发布了新的文献求助10
21秒前
22秒前
阿豪发布了新的文献求助30
22秒前
ziyue发布了新的文献求助10
23秒前
ant完成签到,获得积分10
23秒前
weiwei发布了新的文献求助10
23秒前
数值分析完成签到,获得积分10
24秒前
MrH完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832