Label‐free surface‐enhanced Raman spectroscopy detection of prostate cancer combined with multivariate statistical algorithm

线性判别分析 主成分分析 接收机工作特性 人工智能 多元统计 支持向量机 模式识别(心理学) 前列腺癌 多元分析 数学 算法 统计 癌症 内科学 计算机科学 医学
作者
Xin Zhao,Qingjiang Xu,Yamin Lin,Weiwei Du,Xin Bai,Jiamin Gao,Tao Li,Yimei Huang,Yun Yu,Xiang Hua Wu,Juqiang Lin
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:53 (11): 1861-1870 被引量:5
标识
DOI:10.1002/jrs.6428
摘要

Abstract The purpose of this study was to detect human plasma for screening prostate cancer (PCa) and benign prostatic hyperplasia (BPH) based on surface‐enhanced Raman spectroscopy (SERS) and multivariate statistical algorithms. The test was to detect 106 plasma samples, which originated from 39 normal subjects, 26 patients with PCa and 41 patients with BPH. Significant differences in peak intensity at 495, 636, 1135, 1205, and 1675 cm −1 can be observed from the difference spectrogram, which contributes to initially distinguish the cancer group from the normal group. Then, the multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA) diagnostic algorithms, as well as recursive weighted partial least square (PLS) method and support vector machine (SVM) algorithm, were used to analyze the spectral data. For PCa versus normal group and BPH versus normal group, the classification accuracy of PCA‐LDA was 96.80% and 97.50%, respectively, and the classification accuracy of PLS‐SVM was 100.00% and 100.00%, respectively. In the diagnosis of PCa and BPH, the sensitivity, specificity and accuracy of PCA‐LDA were 65.40%, 75.60%, and 71.06% respectively, and the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.788, while the sensitivity, specificity and accuracy of PLS‐SVM were 88.46%, 87.80%, and 88.06%, respectively, and the AUC value was 0.881. The diagnostic results of PLS‐SVM are better than PCA‐LDA, which supported that PLS‐SVM algorithm has greater potential than PCA‐LDA algorithm in the pre‐diagnosis and screening of PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的安珊完成签到,获得积分10
1秒前
Akim应助xiaokezhang采纳,获得10
1秒前
1秒前
柠木完成签到 ,获得积分10
1秒前
系统提示发布了新的文献求助10
1秒前
marigold完成签到,获得积分10
1秒前
Gaoge完成签到,获得积分10
2秒前
愉快的无招完成签到,获得积分10
2秒前
2秒前
HEIKU应助习习采纳,获得10
3秒前
3秒前
3秒前
3秒前
合适苗条完成签到,获得积分10
3秒前
Zn应助开水泡饼采纳,获得10
3秒前
科目三应助Liu采纳,获得10
4秒前
4秒前
eating完成签到,获得积分10
4秒前
李双艳完成签到,获得积分10
4秒前
英姑应助科研混子采纳,获得10
4秒前
li完成签到,获得积分10
5秒前
Hungrylunch应助woshiwuziq采纳,获得20
6秒前
合适苗条发布了新的文献求助10
6秒前
安静听白发布了新的文献求助10
6秒前
krystal发布了新的文献求助10
6秒前
7秒前
15122303完成签到,获得积分10
7秒前
lht完成签到 ,获得积分10
8秒前
传奇3应助纯真电源采纳,获得10
8秒前
环走鱼尾纹完成签到 ,获得积分10
8秒前
xiuxiu_27发布了新的文献求助10
9秒前
222完成签到,获得积分10
9秒前
zyz1132完成签到,获得积分10
9秒前
何处芳歇完成签到,获得积分10
10秒前
10秒前
LXYang完成签到,获得积分10
10秒前
10秒前
LL完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678