Label‐free surface‐enhanced Raman spectroscopy detection of prostate cancer combined with multivariate statistical algorithm

线性判别分析 主成分分析 接收机工作特性 人工智能 多元统计 支持向量机 模式识别(心理学) 前列腺癌 多元分析 数学 算法 统计 癌症 内科学 计算机科学 医学
作者
Xin Zhao,Qingjiang Xu,Yamin Lin,Weiwei Du,Xin Bai,Jiamin Gao,Tao Li,Yimei Huang,Yun Yu,Xiang Hua Wu,Juqiang Lin
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:53 (11): 1861-1870 被引量:5
标识
DOI:10.1002/jrs.6428
摘要

Abstract The purpose of this study was to detect human plasma for screening prostate cancer (PCa) and benign prostatic hyperplasia (BPH) based on surface‐enhanced Raman spectroscopy (SERS) and multivariate statistical algorithms. The test was to detect 106 plasma samples, which originated from 39 normal subjects, 26 patients with PCa and 41 patients with BPH. Significant differences in peak intensity at 495, 636, 1135, 1205, and 1675 cm −1 can be observed from the difference spectrogram, which contributes to initially distinguish the cancer group from the normal group. Then, the multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA) diagnostic algorithms, as well as recursive weighted partial least square (PLS) method and support vector machine (SVM) algorithm, were used to analyze the spectral data. For PCa versus normal group and BPH versus normal group, the classification accuracy of PCA‐LDA was 96.80% and 97.50%, respectively, and the classification accuracy of PLS‐SVM was 100.00% and 100.00%, respectively. In the diagnosis of PCa and BPH, the sensitivity, specificity and accuracy of PCA‐LDA were 65.40%, 75.60%, and 71.06% respectively, and the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.788, while the sensitivity, specificity and accuracy of PLS‐SVM were 88.46%, 87.80%, and 88.06%, respectively, and the AUC value was 0.881. The diagnostic results of PLS‐SVM are better than PCA‐LDA, which supported that PLS‐SVM algorithm has greater potential than PCA‐LDA algorithm in the pre‐diagnosis and screening of PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Agoni发布了新的文献求助10
刚刚
旺阿旺完成签到,获得积分10
1秒前
李健应助合适冷霜采纳,获得10
1秒前
lily完成签到,获得积分20
2秒前
深情安青应助threonine采纳,获得10
2秒前
FFSGF发布了新的文献求助10
2秒前
科研黑洞发布了新的文献求助10
3秒前
summer夏发布了新的文献求助10
3秒前
3秒前
cwy完成签到,获得积分10
4秒前
4秒前
xsy完成签到 ,获得积分10
5秒前
Ploaris完成签到,获得积分10
5秒前
皇甫妙竹完成签到,获得积分10
5秒前
Liufgui应助123采纳,获得10
5秒前
bkagyin应助汪汪采纳,获得10
6秒前
Roy发布了新的文献求助10
6秒前
Rondab应助愉快的宛儿采纳,获得10
6秒前
sqw完成签到,获得积分10
7秒前
Bin发布了新的文献求助10
7秒前
Owen应助好好好采纳,获得10
7秒前
小耳朵完成签到,获得积分20
7秒前
yc完成签到,获得积分10
8秒前
SYLH应助zhou_hu采纳,获得10
8秒前
畅快的迎蓉完成签到,获得积分10
8秒前
9秒前
笨笨垣完成签到,获得积分20
9秒前
9秒前
机智的灵萱完成签到,获得积分10
9秒前
Sober完成签到 ,获得积分10
9秒前
小猪猪应助Kelly采纳,获得10
9秒前
BANG发布了新的文献求助10
10秒前
10秒前
10秒前
昏睡的蟠桃应助newman采纳,获得50
11秒前
11秒前
12秒前
12秒前
安之完成签到,获得积分10
13秒前
无名的喧嚣完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406