亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative research on network intrusion detection methods based on machine learning

计算机科学 机器学习 人工智能 入侵检测系统 超参数 决策树 朴素贝叶斯分类器 支持向量机 集成学习 随机森林 人工神经网络 深度学习 算法 数据挖掘
作者
Chunying Zhang,Donghao Jia,Liya Wang,Wenjie Wang,Fengchun Liu,Aimin Yang
出处
期刊:Computers & Security [Elsevier]
卷期号:121: 102861-102861 被引量:61
标识
DOI:10.1016/j.cose.2022.102861
摘要

Network intrusion detection system is an essential part of network security research. It detects intrusion behaviors through active defense technology and takes emergency measures such as alerting and terminating intrusions. With the rapid development of machine learning technology, more and more researchers apply machine learning algorithms to network intrusion detection to improve detection efficiency and accuracy. Due to the different principles of various algorithms, they also have their advantages and disadvantages. To construct the dominant algorithm model in the field of network intrusion detection and provide the accuracy value, this paper systematically combs the application literature of machine learning algorithms in intrusion detection in the past ten years. A review is made from three categories: traditional machine learning, ensemble learning, and deep learning. Then, this paper selects the KDD CUP99 and NSL-KDD datasets to conduct comparative experiments on decision trees, Naive Bayes, support vector machines, random forests, XGBoost, convolutional neural networks, and recurrent neural networks. The detection accuracy, F1, AUC, and other indicators of these algorithms on different data sets are compared. The experimental results show that the effect of the ensemble learning algorithm is generally better. The Naive Bayes algorithm has low accuracy in recognizing the learned data, but it has obvious advantages when facing new types of attacks, and the training speed is faster. The deep learning algorithm is not particularly prominent in this experiment, but its optimal results are affected by the structure, hyperparameters, and the number of training iterations, which need further in-depth study. Finally, the main challenges facing the current network intrusion detection field are summarized, and the future research directions have been prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
hjygzv完成签到,获得积分10
9秒前
童心未泯发布了新的文献求助10
10秒前
缓存完成签到 ,获得积分10
14秒前
wanci应助万雨斌采纳,获得10
16秒前
典雅的太阳完成签到,获得积分10
17秒前
童心未泯完成签到,获得积分10
18秒前
tang完成签到,获得积分10
20秒前
23秒前
24秒前
27秒前
28秒前
万雨斌发布了新的文献求助10
29秒前
风起枫落完成签到,获得积分10
35秒前
毛豆应助清修采纳,获得10
40秒前
幽壑之潜蛟应助快乐飞丹采纳,获得10
42秒前
49秒前
嘎嘎好发布了新的文献求助10
52秒前
53秒前
w。完成签到 ,获得积分10
55秒前
wf发布了新的文献求助10
57秒前
完美世界应助dali采纳,获得10
1分钟前
SYLH应助qwq采纳,获得10
1分钟前
wupeilin0完成签到 ,获得积分10
1分钟前
Orange应助PrayOne采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
lwww应助科研通管家采纳,获得10
1分钟前
1分钟前
dali完成签到,获得积分20
1分钟前
dali发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎完成签到 ,获得积分10
1分钟前
领导范儿应助wf采纳,获得10
1分钟前
ss完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387