阴极
吸附
降级(电信)
活性炭
四环素
兴奋剂
化学
化学工程
晋升(国际象棋)
材料科学
环境化学
光电子学
工程类
电气工程
有机化学
生物化学
政治学
物理化学
政治
法学
抗生素
作者
Shuaishuai Han,Zhonghua Wang,Xinxin Pi,Chuanyan Wu,Xuejia Wang,Yong Wang,Xiaoyan Liu,Haiqian Zhao
标识
DOI:10.1016/j.jclepro.2022.133524
摘要
The effective matching of ·OH produced by an electro-Fenton cathode with liquid-phase pollutants is the key to the efficient degradation of pollutants by using electro-Fenton systems. Therefore, tetracycline (TC) was enriched near a carbon cathode through N-doped modification, and the modified carbon cathode increased ·OH generation. The zone of TC degradation by ·OH and zone of ·OH generation were both controlled near the cathode. This phenomenon was called “controlling the reaction zone.” The adsorption capacities of NAC-1000/GF considerably increased by 9.16% and 31.09% for TC and H 2 O 2 , respectively. In addition, the modified cathodic electro-Fenton system (NAC-1000/GF) showed 17.15 mg L −1 improvement in the degradation effect of TC compared with the unmodified system. This improvement is substantially higher than that of the pure adsorption system (5.98 mg L −1 ). The degradation efficiency of TC reached 83.07% in 120 min. Structural characterization, molecular dynamics simulation, and electrochemical experiments revealed that pyrrolic-N enhanced the adsorption capacity of the activated carbon cathode, and pyridinic-N and graphitic-N further hindered TC desorption, which provided a favorable guarantee for controlling the reaction zone. Pyridinic-N and graphitic-N also enhanced the 2e-ORR selectivity of the cathode and promoted ·OH generation, which was conducive to the continuous and efficient degradation reaction in the zone. In addition, the theoretical calculation confirmed that an effective synergy existed between adsorption and electrolysis . This study provides a new direction and theoretical guidance for the development of electro-Fenton technology for water pollutant degradation . • The adsorption and electrochemical properties of activated carbon were improved by N-doping. • There is an effective synergistic effect between adsorption and electrolysis. • The catalytic degradation zone is controlled near the ·OH generation zone. • Controlling the reaction zone can greatly improve TC degradation efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI