Addition of collagen type I in agarose created a dose-dependent effect on matrix production in engineered cartilage

琼脂糖 细胞外基质 自愈水凝胶 化学 软骨 糖胺聚糖 基质(化学分析) Ⅰ型胶原 II型胶原 组织工程 生物医学工程 蛋白多糖 生物物理学 生物化学 解剖 色谱法 高分子化学 内分泌学 生物 医学
作者
Gabriel R. López-Marcial,Keerthana Elango,Grace D. O’Connell
出处
期刊:Regenerative Biomaterials [Oxford University Press]
卷期号:9 被引量:7
标识
DOI:10.1093/rb/rbac048
摘要

Extracellular-matrix composition impacts mechanical performance in native and engineered tissues. Previous studies showed collagen type I-agarose blends increased cell-matrix interactions and extracellular matrix production. However, long-term impacts on protein production and mechanical properties of engineered cartilage are unknown. Our objective was to characterize the effect of collagen type I on the matrix production of chondrocytes embedded in agarose hydrogels. We hypothesized that the addition of collagen would improve long-term mechanical properties and matrix production (e.g. collagen and glycosaminoglycans) through increased bioactivity. Agarose hydrogels (2% w/v) were mixed with varying concentrations of collagen type I (0, 2 and 5 mg/ml). Juvenile bovine chondrocytes were added to the hydrogels to assess matrix production over 4 weeks through biochemical assays, and mechanical properties were assessed through unconfined compression. We observed a dose-dependent effect on cell bioactivity, where 2 mg/ml of collagen improved bioactivity, but 5 mg/ml had a negative impact on bioactivity. This resulted in a higher modulus for scaffolds supplemented with lower collagen concentration as compared to the higher collagen concentration, but not when compared to the control. In conclusion, the addition of collagen to agarose constructs provided a dose-dependent impact on improving glycosaminoglycan production but did not improve collagen production or compressive mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助妮儿采纳,获得10
1秒前
tododoto完成签到,获得积分10
1秒前
1秒前
淙淙柔水完成签到,获得积分0
1秒前
杳鸢应助mc1220采纳,获得10
1秒前
rosa完成签到,获得积分10
1秒前
郑小七发布了新的文献求助10
2秒前
Tianxu Li完成签到,获得积分10
3秒前
3秒前
九川发布了新的文献求助10
4秒前
Lucas应助无限的隶采纳,获得10
4秒前
胡雅琴完成签到,获得积分10
4秒前
sakurai完成签到,获得积分10
5秒前
清歌扶酒关注了科研通微信公众号
5秒前
二尖瓣后叶举报ww求助涉嫌违规
5秒前
烟花应助轻松笙采纳,获得10
5秒前
沉默凡桃完成签到,获得积分10
6秒前
6秒前
luuuuuing发布了新的文献求助30
6秒前
啦啦啦完成签到,获得积分10
6秒前
小可发布了新的文献求助10
6秒前
7秒前
LKGG完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
周士乐发布了新的文献求助10
8秒前
Sunshine发布了新的文献求助10
8秒前
呼吸之野完成签到,获得积分10
9秒前
害怕的小懒虫完成签到,获得积分10
9秒前
思源应助Nefelibata采纳,获得10
10秒前
妮儿发布了新的文献求助10
10秒前
BareBear应助rosa采纳,获得10
10秒前
沉默凡桃发布了新的文献求助10
11秒前
Orange应助9℃采纳,获得10
11秒前
11秒前
一只橘子完成签到 ,获得积分10
11秒前
12秒前
韭黄发布了新的文献求助10
12秒前
西瓜发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759