电解质
离子电导率
材料科学
电池(电)
聚合物
电化学
离子键合
过电位
化学工程
碱金属
锂(药物)
盐(化学)
离子液体
聚合物电解质
离子
化学
电极
物理化学
有机化学
复合材料
热力学
催化作用
功率(物理)
内分泌学
工程类
物理
医学
作者
Fangfang Chen,Xiaoen Wang,Michel Armand,Maria Forsyth
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-07-28
卷期号:21 (10): 1175-1182
被引量:4
标识
DOI:10.1038/s41563-022-01319-w
摘要
Polymer electrolytes provide a safe solution for future solid-state high-energy-density batteries. Materials that meet the simultaneous requirement of high ionic conductivity and high transference number remain a challenge, in particular for new battery chemistries beyond lithium such as Na, K and Mg. Herein, we demonstrate the versatility of a polymeric ionic liquid (PolyIL) as a polymer solvent to achieve this goal for both Na and K. Using molecular simulations, we predict and elucidate fast alkali metal ion transport in PolyILs through a structural diffusion mechanism in a polymer-in-salt environment, facilitating a high metal ion transference number simultaneously. Experimental validation of these computationally designed Na and K polymer electrolytes shows good ionic conductivities up to 1.0 × 10-3 S cm-1 at 80 °C and a Na+ transference number of ~0.57. An electrochemical cycling test on a Na∣2:1 NaFSI/PolyIL∣Na symmetric cell also demonstrates an overpotential of 100 mV at a current density of 0.5 mA cm-2 and stable long-term Na plating/stripping performance of more than 100 hours. PolyIL-based polymer-in-salt strategies for new solid-state electrolytes thus offer an alternative route to design high-performance next-generation sustainable battery chemistries.
科研通智能强力驱动
Strongly Powered by AbleSci AI