Multi-objective teaching–learning-based optimization algorithm for carbon-efficient integrated scheduling of distributed production and distribution considering shared transportation resource

计算机科学 调度(生产过程) 生产(经济) 分布式计算 资源分配 作业车间调度 数学优化 资源配置 微观经济学 数学 嵌入式系统 经济 布线(电子设计自动化) 计算机网络
作者
Weihua Tan,Xiaofang Yuan,Jinlei Wang,Haozhi Xu,Lianghong Wu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:406: 137061-137061 被引量:18
标识
DOI:10.1016/j.jclepro.2023.137061
摘要

Being “carbon efficient” is always one of the missions for suppliers to stay competitive. Production and distribution are the core sections of the supply chain, and integrated scheduling of production and distribution has received increasing research interest because of its great potential to enhance operational performance. Distributed production has gained popularity in recent years. However, distribution strategies compatible with distributed production have not been considered. In this paper, we investigated carbon-efficient integrated scheduling of distributed production and distribution considering shared transportation resource. Particularly, the shared transportation resource strategy, which allows vehicles to serve customers from various depots, enables a more flexible distribution than the traditional method. A bi-objective model is constructed to minimize total carbon emission and completion time simultaneously. To address the computational challenge, an enhanced multi-objective teaching–learning-based optimization (EMTLBO) algorithm is proposed. In EMTLBO, several heuristic rules are introduced to obtain high-quality initial solutions and neighborhood structures are designed for efficient neighborhood search. The comprehensive experiments have demonstrated that (1) the proposed enhancement strategies are effective, (2) the overall performance of EMTLBO is superior to seven well-known algorithms in solving this problem, and (3) the shared transportation resource strategy considerably reduces carbon emission during distribution stage, leading to average decreasing of 41.0 %, 70.6 %, and 41.5% for the instance sets. This work presents significance in promoting a clean and efficient modern supply chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
我是老大应助林咩咩采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
Howe完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
落寞代亦完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648