An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet

强化学习 马尔可夫决策过程 计算机科学 动态规划 启发式 收入 运筹学 数学优化 弹道 工作量 车队管理 电动汽车 随机规划 马尔可夫过程 总收入 订单(交换) 匹配(统计) 人工智能 工程类 功率(物理) 经济 数学 物理 财务 量子力学 电信 统计 会计 算法 天文 操作系统
作者
Pengyu Yan,Kaize Yu,Xiuli Chao,Zhibin Chen
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:310 (3): 1218-1233 被引量:12
标识
DOI:10.1016/j.ejor.2023.03.039
摘要

Given the uncertainty of orders and the dynamically changing workload of charging stations, how to dispatch and charge electric vehicle (EV) fleets becomes a significant challenge facing e-hailing platforms. The common practice is to dispatch EVs to serve orders by heuristic matching methods but enable EV drivers to independently make charging decisions based on their experiences, which may compromise the platform's performance. This study proposes a Markov decision process to jointly optimize the charging and order-dispatching schemes for an e-hailing EV fleet, which provides pick-up services for passengers only from a designated transportation hub (i.e., no pick-up from different locations). The objective is to maximize the total revenue of the fleet throughout a finite horizon. The complete state transition equations of the EV fleet are formulated to track the state-of-charge of their batteries. To learn the charging and order-dispatching policy in a dynamic stochastic environment, an online approximation algorithm is developed, which integrates the model-based reinforcement learning (RL) framework with a novel SARSA(Δ)-sample average approximation (SAA) architecture. Compared with the model-free RL algorithm and approximation dynamic programming (ADP), our algorithm explores high-quality decisions by an SAA model with empirical state transitions and exploits the best decisions so far by an SARSA(Δ) sample-trajectory updating. Computational results based on a real case show that, compared with the existing heuristic method and the ADP in the literature, the proposed approach increases the daily revenue by an average of 31.76% and 14.22%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daiwanting发布了新的文献求助10
1秒前
爆米花应助kk采纳,获得10
2秒前
八零发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
7秒前
597完成签到,获得积分10
8秒前
聪慧的草丛完成签到,获得积分10
10秒前
海德堡发布了新的文献求助10
10秒前
sdl发布了新的文献求助10
10秒前
科研通AI2S应助愉快的老五采纳,获得10
10秒前
隐形曼青应助艺馨采纳,获得10
11秒前
11秒前
12秒前
12秒前
小小富应助zzz采纳,获得10
13秒前
安静听白完成签到,获得积分10
14秒前
大模型应助一自文又欠采纳,获得10
14秒前
明天见发布了新的文献求助10
15秒前
成就的南霜完成签到,获得积分10
15秒前
17秒前
Li发布了新的文献求助10
19秒前
Almo完成签到,获得积分10
20秒前
烨坤完成签到 ,获得积分10
20秒前
21秒前
酷波er应助齐安客采纳,获得10
22秒前
大模型应助诸醉山采纳,获得10
23秒前
ahua15s发布了新的文献求助10
24秒前
菠萝完成签到,获得积分20
25秒前
25秒前
25秒前
星辰大海应助明天见采纳,获得10
27秒前
28秒前
29秒前
Eve完成签到,获得积分10
30秒前
艺馨发布了新的文献求助10
31秒前
31秒前
xiaoxin发布了新的文献求助10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963943
求助须知:如何正确求助?哪些是违规求助? 3509857
关于积分的说明 11149145
捐赠科研通 3243684
什么是DOI,文献DOI怎么找? 1792175
邀请新用户注册赠送积分活动 873607
科研通“疑难数据库(出版商)”最低求助积分说明 803839