电解质
电池(电)
阳极
硫黄
电化学
锌
阴极
水溶液
枝晶(数学)
乙二醇
化学工程
无机化学
材料科学
溶剂
化学
电极
有机化学
冶金
物理化学
功率(物理)
物理
几何学
数学
量子力学
工程类
作者
Yuqi Guo,Rodney Chua,Yingqian Chen,Yi Cai,Ernest Jun Jie Tang,J. J. Nicholas Lim,Thu Ha Tran,Vivek Verma,Ming Wah Wong,Madhavi Srinivasan
出处
期刊:Small
[Wiley]
日期:2023-03-27
卷期号:19 (29)
被引量:22
标识
DOI:10.1002/smll.202207133
摘要
Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g-1 and an excellent energy density of 730 Wh kg-1 at 0.1 Ag-1 . In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag-1 . Moreover, the cathode charge-discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2- ( S8→Sx2-→S22-+S2-)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI