RPCRS: Human Activity Recognition Using Millimeter Wave Radar

计算机科学 点云 雷达 稳健性(进化) 云计算 人工智能 卷积神经网络 实时计算 人工神经网络 计算复杂性理论 活动识别 多层感知器 数据挖掘 算法 电信 生物化学 化学 基因 操作系统
作者
Tingpei Huang,Guoyong Liu,Shibao Li,Jianhang Liu
标识
DOI:10.1109/icpads56603.2022.00024
摘要

Millimeter wave radar-based human activity recognition (HAR) technology has received much attention as a research hot-spot in recent years. Previous researches have demonstrated the feasibility of using millimeter wave radar for HAR. While existing work has achieved excellent performance in ideal environments, its application in life is still limited due to the intensive data collection required, the additional training needed to adapt to new domains (i.e., environments, people, and locations), and the high computational complexity associated with voxelization. To solve the above problems, we propose the radar point cloud recognition system RPCRS, which is capable of accurately recognizing human activities from noisy environments, has promising recognition performance for new users, environments and locations, and significantly reduces the computational overhead during system training. Firstly, RPCRS use the velocity information of the clustered point cloud data to extract the human activity subjects from the noisy background. Then, the size of the extracted non-uniform point cloud data is unified by removing or adding the number of point clouds. Secondly, in order to enhance the robustness of the system and reduce the data collection effort, we designed a data enhancement framework based on correlation between point cloud data and human activity changes. Finally, a lightweight neural network based on a multilayer perceptron (MLP) is used to classify the raw point cloud data of human activities, which reduces the computational complexity and memory requirements associated with voxelization. We evaluate our system with 5 different activities, which attains average accuracy of 95.40%. In addition, we evaluate the performance of the system in a new environment and with new users, which obtains an average accuracy of 94.53% and 95.08%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助慧1111111采纳,获得10
1秒前
WZQ完成签到,获得积分10
1秒前
唠嗑在呐发布了新的文献求助10
2秒前
2秒前
火星上的羽毛完成签到,获得积分10
2秒前
雪山飞龙发布了新的文献求助10
3秒前
燕子发布了新的文献求助30
3秒前
5秒前
zhangcdoctor发布了新的文献求助10
5秒前
7秒前
可可应助小宏采纳,获得10
7秒前
情怀应助xusuizi采纳,获得10
7秒前
MchemG应助T拐拐采纳,获得10
8秒前
动人的亦云完成签到 ,获得积分10
9秒前
10秒前
lx完成签到 ,获得积分10
10秒前
在写了发布了新的文献求助10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得30
11秒前
田様应助科研通管家采纳,获得10
11秒前
圆锥香蕉应助科研通管家采纳,获得20
11秒前
dong应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
知许解夏应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得20
12秒前
Ava应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
扎心应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403