RPCRS: Human Activity Recognition Using Millimeter Wave Radar

计算机科学 点云 雷达 稳健性(进化) 云计算 人工智能 卷积神经网络 实时计算 人工神经网络 计算复杂性理论 活动识别 多层感知器 数据挖掘 算法 电信 生物化学 化学 基因 操作系统
作者
Tingpei Huang,Guoyong Liu,Shibao Li,Jianhang Liu
标识
DOI:10.1109/icpads56603.2022.00024
摘要

Millimeter wave radar-based human activity recognition (HAR) technology has received much attention as a research hot-spot in recent years. Previous researches have demonstrated the feasibility of using millimeter wave radar for HAR. While existing work has achieved excellent performance in ideal environments, its application in life is still limited due to the intensive data collection required, the additional training needed to adapt to new domains (i.e., environments, people, and locations), and the high computational complexity associated with voxelization. To solve the above problems, we propose the radar point cloud recognition system RPCRS, which is capable of accurately recognizing human activities from noisy environments, has promising recognition performance for new users, environments and locations, and significantly reduces the computational overhead during system training. Firstly, RPCRS use the velocity information of the clustered point cloud data to extract the human activity subjects from the noisy background. Then, the size of the extracted non-uniform point cloud data is unified by removing or adding the number of point clouds. Secondly, in order to enhance the robustness of the system and reduce the data collection effort, we designed a data enhancement framework based on correlation between point cloud data and human activity changes. Finally, a lightweight neural network based on a multilayer perceptron (MLP) is used to classify the raw point cloud data of human activities, which reduces the computational complexity and memory requirements associated with voxelization. We evaluate our system with 5 different activities, which attains average accuracy of 95.40%. In addition, we evaluate the performance of the system in a new environment and with new users, which obtains an average accuracy of 94.53% and 95.08%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子石榴完成签到,获得积分10
1秒前
Andy完成签到,获得积分10
2秒前
Nick完成签到,获得积分10
2秒前
yy完成签到 ,获得积分10
2秒前
今后应助太空工程师采纳,获得10
2秒前
Ava应助懵懂的明辉采纳,获得10
2秒前
3秒前
albertxin完成签到,获得积分10
4秒前
好困应助饱满的雨泽采纳,获得10
5秒前
6秒前
yangzhang完成签到,获得积分10
7秒前
goodsheep完成签到 ,获得积分10
7秒前
向雅完成签到,获得积分10
7秒前
pluto应助albertxin采纳,获得10
8秒前
研友Bn完成签到 ,获得积分10
9秒前
小刘小刘完成签到 ,获得积分10
9秒前
wxj发布了新的文献求助10
9秒前
12秒前
三毛变相完成签到,获得积分10
12秒前
CYL完成签到 ,获得积分10
13秒前
14秒前
拾遗就是我完成签到,获得积分10
14秒前
jw完成签到,获得积分10
14秒前
一颗红葡萄完成签到 ,获得积分10
15秒前
芋圆完成签到,获得积分10
15秒前
海心完成签到,获得积分10
15秒前
Akim应助幽默尔蓝采纳,获得10
16秒前
柒柒发布了新的文献求助10
17秒前
呱呱呱发布了新的文献求助10
17秒前
membrane完成签到,获得积分10
17秒前
王京华完成签到,获得积分10
18秒前
光崽是谁完成签到,获得积分10
18秒前
木日完成签到,获得积分10
20秒前
哈哈完成签到 ,获得积分10
20秒前
科研通AI2S应助天下采纳,获得10
21秒前
高山流水完成签到,获得积分10
22秒前
冰糖葫芦娃完成签到,获得积分10
22秒前
Cristina2024完成签到,获得积分10
22秒前
Cheney完成签到 ,获得积分10
23秒前
呱呱呱完成签到,获得积分10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3326863
求助须知:如何正确求助?哪些是违规求助? 2957196
关于积分的说明 8583804
捐赠科研通 2635107
什么是DOI,文献DOI怎么找? 1442360
科研通“疑难数据库(出版商)”最低求助积分说明 668210
邀请新用户注册赠送积分活动 655107