Bayesian optimization with active learning of design constraints using an entropy-based approach

贝叶斯优化 帕累托原理 计算机科学 数学优化 多目标优化 最大熵原理 机械工程 工艺工程 数学 工程类 人工智能
作者
Khatamsaz, Danial,Vela, Brent,Singh, Prashant,Johnson, Duane D.,Allaire, Douglas,Arróyave, Raymundo
出处
期刊:npj computational materials [Springer Nature]
卷期号:9 (1) 被引量:2
标识
DOI:10.1038/s41524-023-01006-7
摘要

Abstract The design of alloys for use in gas turbine engine blades is a complex task that involves balancing multiple objectives and constraints. Candidate alloys must be ductile at room temperature and retain their yield strength at high temperatures, as well as possess low density, high thermal conductivity, narrow solidification range, high solidus temperature, and a small linear thermal expansion coefficient. Traditional Integrated Computational Materials Engineering (ICME) methods are not sufficient for exploring combinatorially-vast alloy design spaces, optimizing for multiple objectives, nor ensuring that multiple constraints are met. In this work, we propose an approach for solving a constrained multi-objective materials design problem over a large composition space, specifically focusing on the Mo-Nb-Ti-V-W system as a representative Multi-Principal Element Alloy (MPEA) for potential use in next-generation gas turbine blades. Our approach is able to learn and adapt to unknown constraints in the design space, making decisions about the best course of action at each stage of the process. As a result, we identify 21 Pareto-optimal alloys that satisfy all constraints. Our proposed framework is significantly more efficient and faster than a brute force approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Genius采纳,获得10
刚刚
yuuui发布了新的文献求助10
1秒前
黄bb应助QQ采纳,获得10
1秒前
三七完成签到,获得积分10
1秒前
tapekit发布了新的文献求助10
2秒前
yuantao发布了新的文献求助10
2秒前
john_joestar发布了新的文献求助10
2秒前
2秒前
3秒前
ewfr发布了新的文献求助10
3秒前
3秒前
3秒前
王木木发布了新的文献求助10
3秒前
bkagyin应助刘凤莲采纳,获得10
3秒前
隐形曼青应助JING采纳,获得10
4秒前
4秒前
信wz发布了新的文献求助10
4秒前
laofe发布了新的文献求助10
4秒前
踏实口红发布了新的文献求助10
5秒前
Young应助宋祥廷采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
pipizhu发布了新的文献求助10
5秒前
蓝柚应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
乐乐应助起起采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576925
求助须知:如何正确求助?哪些是违规求助? 4662126
关于积分的说明 14740050
捐赠科研通 4602835
什么是DOI,文献DOI怎么找? 2525962
邀请新用户注册赠送积分活动 1495839
关于科研通互助平台的介绍 1465470