Identification of sweetpotato black spot disease caused by Ceratocystis fimbriata by quartz crystal microbalance array

石英晶体微天平 三氯氢硅 傅里叶变换红外光谱 分子印迹聚合物 沸石咪唑盐骨架 质谱法 分析化学(期刊) 材料科学 化学工程 化学 色谱法 金属有机骨架 光电子学 选择性 吸附 有机化学 催化作用 工程类
作者
Linjiang Pang,Lu Zhang,Zhenhe Wang,Guoquan Lu,Xia Sun,Jiyu Cheng,Shihao Chen,Guangyu Qi,Xiaoyi Duan,Rui Xu,Wei Chen,Xinghua Lu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:386: 133761-133761 被引量:5
标识
DOI:10.1016/j.snb.2023.133761
摘要

Sweetpotato black spot disease caused by Ceratocystis fimbriata is a major sweetpotato disease that not only affects yield and storage but also damages human or animal health. Herein, a four-element quartz crystal microbalance (QCM) gas sensor array based on molecularly imprinted polymers (MIPs) and zeolitic imidazolate frameworks (ZIFs) materials were reported to differentiate healthy sweetpotatoes and sick sweetpotatoes. Several volatile organic compounds, namely citronellol, heptanal, benzaldehyde, and 2-pentylfuran, were selected for detection based on the results of gas chromatography-mass spectrometry (GC-MS). The MIPs and ZIFs were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption, and the results show that materials were successfully obtained. The four sensors based on the as-prepared materials exhibited excellent sensitivity and selectivity toward target gases. Finally, the sensor array was applied to identify sick sweetpotatoes. Frequency shift was selected as the eigenvalue and quadratic support vector machine (QSVM) and weighted k-nearest neighbor (WKNN) models were employed for discrimination. QSVM and WKNN exhibited 100% accuracy in classification, proving that the sensor array can be used for the identification of Ceratocystis-fimbriata-infested sweetpotatoes. This study may contribute to the development of gas sensor arrays for use in agri-food quality control and protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh发布了新的文献求助10
1秒前
墨翎发布了新的文献求助30
1秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
1秒前
SciGPT应助TT采纳,获得10
3秒前
科目三应助罖亽采纳,获得10
3秒前
今后应助devil采纳,获得10
4秒前
IP41320完成签到,获得积分20
4秒前
hh完成签到,获得积分10
5秒前
AI完成签到 ,获得积分10
6秒前
7秒前
微风轻起发布了新的文献求助10
8秒前
8秒前
zsyzxb发布了新的文献求助10
9秒前
老鱼吹浪完成签到 ,获得积分10
9秒前
13秒前
14秒前
复杂煎饼完成签到,获得积分10
15秒前
15秒前
科研通AI5应助忆韵采纳,获得10
16秒前
罖亽发布了新的文献求助10
17秒前
orixero应助三顿饭吃一天采纳,获得10
19秒前
20秒前
临在完成签到,获得积分10
20秒前
20秒前
wu关闭了wu文献求助
21秒前
youyuguang完成签到,获得积分10
21秒前
22秒前
由哎完成签到,获得积分10
22秒前
小庄应助复杂煎饼采纳,获得10
23秒前
科研通AI5应助科研小白菜采纳,获得10
24秒前
迷路以筠发布了新的文献求助10
24秒前
24秒前
满意冷荷发布了新的文献求助10
25秒前
25秒前
Connor完成签到,获得积分10
27秒前
dengxu发布了新的文献求助10
28秒前
fionazhangdr发布了新的文献求助10
29秒前
就是我发布了新的文献求助10
29秒前
科研通AI5应助徐徐采纳,获得10
33秒前
小林太郎应助Anquan采纳,获得30
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849