MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106213-106213 被引量:20
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助哈哈哈采纳,获得10
刚刚
126完成签到,获得积分10
刚刚
DYS发布了新的文献求助10
刚刚
科研通AI2S应助LX采纳,获得10
刚刚
Myu111111完成签到,获得积分10
1秒前
1秒前
大鱼完成签到,获得积分10
1秒前
BA1完成签到,获得积分10
2秒前
2秒前
景行完成签到,获得积分10
3秒前
3秒前
大金鱼发布了新的文献求助10
3秒前
明月朝灯发布了新的文献求助10
3秒前
3秒前
4秒前
wy完成签到,获得积分10
4秒前
牧笛发布了新的文献求助10
4秒前
4秒前
Myu111111发布了新的文献求助10
5秒前
柳雷发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
大鱼发布了新的文献求助10
7秒前
orixero应助Balance Man采纳,获得10
7秒前
景行发布了新的文献求助10
8秒前
8秒前
9秒前
Kitty完成签到,获得积分10
9秒前
九行代码完成签到,获得积分10
10秒前
yanghaiyu发布了新的文献求助10
10秒前
kissego100完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
镜镜子完成签到 ,获得积分10
11秒前
Flex完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
赘婿应助巧克力饼干采纳,获得10
13秒前
憨憨发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076