MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106213-106213 被引量:6
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼应助xiuxiuzhang采纳,获得20
刚刚
精明的满天完成签到 ,获得积分10
刚刚
1秒前
欣喜以完成签到,获得积分10
1秒前
sjc发布了新的文献求助10
1秒前
China发布了新的文献求助10
2秒前
爆米花应助阿琳采纳,获得10
2秒前
2秒前
田様应助JoJo采纳,获得10
2秒前
JamesPei应助狗子采纳,获得10
3秒前
慕青应助研友_Z305k8采纳,获得10
4秒前
4秒前
小芒果发布了新的文献求助10
4秒前
认真乐双完成签到,获得积分10
5秒前
我叫胖子发布了新的文献求助10
5秒前
5秒前
5秒前
个性的紫菜应助木槿采纳,获得10
5秒前
脈打完成签到,获得积分10
5秒前
ArZn完成签到,获得积分10
5秒前
Ronggaz完成签到 ,获得积分10
6秒前
共享精神应助Joel采纳,获得10
7秒前
CodeCraft应助魔芋采纳,获得10
8秒前
英俊的铭应助奶油橘子采纳,获得100
8秒前
体面人完成签到,获得积分10
8秒前
stella发布了新的文献求助10
9秒前
DAISHU发布了新的文献求助10
10秒前
11秒前
TK发布了新的文献求助10
11秒前
前蹄儿完成签到,获得积分10
11秒前
佩佩完成签到,获得积分10
13秒前
害怕的千琴完成签到,获得积分10
13秒前
ZXG发布了新的文献求助10
14秒前
14秒前
孙宝锋完成签到,获得积分10
14秒前
15秒前
积极晓绿完成签到,获得积分10
15秒前
桐桐应助普通用户30号采纳,获得30
16秒前
bjjtdx1997发布了新的文献求助10
16秒前
guo完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042