MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106213-106213 被引量:20
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈燕欣发布了新的文献求助10
2秒前
所所应助花生酱采纳,获得10
2秒前
过儿发布了新的文献求助10
3秒前
vampirell完成签到,获得积分0
3秒前
song发布了新的文献求助10
4秒前
张鹏举发布了新的文献求助10
4秒前
可露丽发布了新的文献求助10
4秒前
大个应助yyyyyyy采纳,获得10
5秒前
勤恳万宝路完成签到,获得积分10
6秒前
8秒前
所所应助二柱子采纳,获得10
8秒前
9秒前
URB7完成签到,获得积分10
9秒前
kun应助醉林采纳,获得10
9秒前
yan发布了新的文献求助10
9秒前
chao完成签到,获得积分10
11秒前
Archer完成签到,获得积分10
11秒前
12秒前
小羊完成签到 ,获得积分10
12秒前
12秒前
栗子发布了新的文献求助20
12秒前
张云清发布了新的文献求助30
12秒前
zhangjiashu发布了新的文献求助10
12秒前
lucky完成签到 ,获得积分10
13秒前
haaaaaa发布了新的文献求助10
13秒前
茶艺大师づ完成签到,获得积分0
13秒前
浮游应助sososo采纳,获得10
13秒前
13秒前
科研通AI6应助LLRO采纳,获得150
14秒前
高兴的海豚完成签到,获得积分10
15秒前
英姑应助111111采纳,获得10
16秒前
17秒前
稳重翅膀发布了新的文献求助10
17秒前
678邹发布了新的文献求助10
17秒前
18秒前
脑洞疼应助顺顺顺顺采纳,获得20
18秒前
18秒前
8564523完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350838
求助须知:如何正确求助?哪些是违规求助? 4484158
关于积分的说明 13958205
捐赠科研通 4383562
什么是DOI,文献DOI怎么找? 2408471
邀请新用户注册赠送积分活动 1401068
关于科研通互助平台的介绍 1374476