已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106213-106213 被引量:20
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助淡定沧海采纳,获得10
刚刚
溜达鸡完成签到 ,获得积分10
1秒前
GD发布了新的文献求助10
2秒前
假茂茂发布了新的文献求助10
3秒前
5秒前
5秒前
Lucas应助英勇羿采纳,获得30
6秒前
7秒前
满意白卉完成签到 ,获得积分10
8秒前
u9227发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
YXHTCM发布了新的文献求助10
12秒前
455完成签到,获得积分10
13秒前
13秒前
小鱼完成签到 ,获得积分10
16秒前
慕青应助菠萝披萨采纳,获得10
17秒前
九思发布了新的文献求助10
18秒前
林牧完成签到,获得积分10
20秒前
22秒前
大帅哥发布了新的文献求助10
26秒前
大个应助优美的南烟采纳,获得10
26秒前
spzdss发布了新的文献求助150
26秒前
懵懂的曼寒完成签到,获得积分10
30秒前
30秒前
无花果应助u9227采纳,获得10
30秒前
31秒前
黎明发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
浮游应助刘丹丹采纳,获得10
33秒前
Helio发布了新的文献求助10
36秒前
lzl17o8发布了新的文献求助10
36秒前
40秒前
霸气的半烟完成签到,获得积分20
40秒前
fisker完成签到,获得积分10
42秒前
43秒前
fzx完成签到,获得积分10
43秒前
lll发布了新的文献求助10
44秒前
47秒前
47秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986