MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106213-106213 被引量:6
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的凡完成签到,获得积分10
2秒前
4秒前
Killua完成签到,获得积分10
4秒前
小静静完成签到,获得积分10
5秒前
哭泣从菡发布了新的文献求助10
5秒前
ei123发布了新的文献求助30
5秒前
小蘑菇应助柳娅茹采纳,获得10
6秒前
忧郁尔容完成签到,获得积分10
7秒前
花花应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得40
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Bio应助科研通管家采纳,获得30
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
Bio应助科研通管家采纳,获得30
9秒前
9秒前
2Y完成签到,获得积分10
9秒前
zhzhzh发布了新的文献求助10
11秒前
一个冷漠无情的人完成签到,获得积分10
11秒前
13秒前
上官若男应助知性的刺猬采纳,获得10
13秒前
16秒前
苹果柜子完成签到,获得积分10
16秒前
愉快的擎汉完成签到,获得积分10
17秒前
bkagyin应助不打游戏_采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070