亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106213-106213 被引量:6
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cm完成签到,获得积分10
2秒前
snljty完成签到,获得积分10
2秒前
喜悦宫苴完成签到,获得积分10
2秒前
谢谢谢完成签到,获得积分10
3秒前
SCI的李完成签到 ,获得积分10
6秒前
似水流年完成签到 ,获得积分10
6秒前
7秒前
希望天下0贩的0应助zc采纳,获得10
8秒前
合一海盗完成签到,获得积分10
9秒前
movinglee完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
wop111应助科研通管家采纳,获得50
11秒前
雅典的宠儿完成签到 ,获得积分10
11秒前
13秒前
13秒前
谢谢谢发布了新的文献求助10
14秒前
庄sir完成签到,获得积分20
20秒前
20秒前
xiaorui完成签到,获得积分10
21秒前
小湛完成签到 ,获得积分10
21秒前
simon完成签到 ,获得积分10
23秒前
阿Q完成签到,获得积分10
23秒前
xm完成签到 ,获得积分10
23秒前
米糊发布了新的文献求助10
26秒前
敏感的飞松完成签到 ,获得积分10
26秒前
从容海发布了新的文献求助10
28秒前
30秒前
短巷完成签到 ,获得积分10
32秒前
32秒前
35秒前
谢谢谢发布了新的文献求助10
35秒前
37秒前
桐桐应助TZY采纳,获得10
38秒前
米糊完成签到,获得积分10
42秒前
威武灵阳完成签到,获得积分10
42秒前
44秒前
47秒前
小二郎应助谢谢谢采纳,获得10
47秒前
oligo完成签到 ,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900004
求助须知:如何正确求助?哪些是违规求助? 4180167
关于积分的说明 12976382
捐赠科研通 3944493
什么是DOI,文献DOI怎么找? 2163784
邀请新用户注册赠送积分活动 1182028
关于科研通互助平台的介绍 1087900