MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation

计算机科学 分割 人工智能 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106213-106213 被引量:20
标识
DOI:10.1016/j.engappai.2023.106213
摘要

At present, adding Transformer to CNN has promoted the rapid development of colorectal polyp image processing. However, from the perspective of multi-scale feature interaction and boundary coherence, there are mainly some limitations: (1) ignore the local and global correlation within the scale feature, which may cause the missed detection of tiny polyps, (2) lack of multi-scale features to explore the target region, which hinders the learning of multi-variant polyps, and (3) the semantic connection between the target area and the boundary is ignored, cause incoherent segmentation boundaries. In this regard, we design a multi-scale feature boundary graph inference network for polyp segmentation, namely MFBGR. First, the Transformer block captures local–global cues inside the multi-scale information learned by the CNN branches. Second, for the multi-scale global information generated by the Transformer block, we design a cross-scale feature fusion module (CSFM). CSFM performs scale-variation interaction and cascaded fusion to capture the correlation between features across scales and solve the scale-variation problem of segmented objects. Finally, the traditional boundary refinement or enhancement idea is generalized to the graph convolutional reasoning layer (BGRM). BGRM receives CNN's low-level feature information and CSFM's fusion features, or intermediate prediction results, and propagates cross-domain feature information between graph vertices, explores information between target regions and boundary regions, and achieves more accurate boundary segmentation. On the CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ETIS datasets, MFBGR and mainstream polyp segmentation networks were compared and tested. MFBGR achieved good results, and Dice, IOU, BAcc, and Haudo were the best. The values reached 94.16%, 89.35% and 97.42%, 3.7442, and the segmentation accuracy of colorectal polyp images has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助yyy采纳,获得10
刚刚
嘟嘟发布了新的文献求助10
刚刚
威武从筠发布了新的文献求助10
刚刚
刚刚
1秒前
御坂10576号完成签到,获得积分10
1秒前
田様应助想龙空采纳,获得10
2秒前
2秒前
万能图书馆应助坦率尔曼采纳,获得10
3秒前
顾矜应助Nsync采纳,获得10
3秒前
充电宝应助虚拟的乐萱采纳,获得10
4秒前
英俊的铭应助ns采纳,获得50
4秒前
李佳明完成签到,获得积分10
4秒前
大胆的弼完成签到,获得积分10
4秒前
菜鸡完成签到,获得积分10
4秒前
5秒前
orixero应助嘟嘟采纳,获得10
5秒前
5秒前
zhechen发布了新的文献求助10
6秒前
童宝完成签到,获得积分10
6秒前
蒙蒙雨歌发布了新的文献求助20
6秒前
Nick Green完成签到,获得积分10
7秒前
10秒前
阔达鑫发布了新的文献求助30
10秒前
Rowan发布了新的文献求助10
10秒前
11秒前
壮观定帮完成签到,获得积分10
12秒前
12秒前
13秒前
略略略发布了新的文献求助10
13秒前
13秒前
13秒前
xiaoX12138发布了新的文献求助10
13秒前
scutwqq完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
applelpypies完成签到 ,获得积分0
15秒前
复杂纸飞机完成签到,获得积分10
16秒前
16秒前
17秒前
帅哥许发布了新的文献求助20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750