S3R: Shape and Semantics-Based Selective Regularization for Explainable Continual Segmentation Across Multiple Sites

分割 正规化(语言学) 计算机科学 人工智能 语义学(计算机科学) 图像分割 自然语言处理 模式识别(心理学) 理论计算机科学 程序设计语言
作者
Jingyang Zhang,Ran Gu,Peng Xue,Mianxin Liu,Hao Zheng,Yefeng Zheng,Lei Ma,Guotai Wang,Lixu Gu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2539-2551 被引量:1
标识
DOI:10.1109/tmi.2023.3260974
摘要

In clinical practice, it is desirable for medical image segmentation models to be able to continually learn on a sequential data stream from multiple sites, rather than a consolidated dataset, due to storage cost and privacy restrictions. However, when learning on a new site, existing methods struggle with a weak memorizability for previous sites with complex shape and semantic information, and a poor explainability for the memory consolidation process. In this work, we propose a novel Shape and Semantics-based Selective Regularization ( $\text{S}^{{3}}\text{R}$ ) method for explainable cross-site continual segmentation to maintain both shape and semantic knowledge of previously learned sites. Specifically, $\text{S}^{{3}}\text{R}$ method adopts a selective regularization scheme to penalize changes of parameters with high Joint Shape and Semantics-based Importance (JSSI) weights, which are estimated based on the parameter sensitivity to shape properties and reliable semantics of the segmentation object. This helps to prevent the related shape and semantic knowledge from being forgotten. Moreover, we propose an Importance Activation Mapping (IAM) method for memory interpretation, which indicates the spatial support for important parameters to visualize the memorized content. We have extensively evaluated our method on prostate segmentation and optic cup and disc segmentation tasks. Our method outperforms other comparison methods in reducing model forgetting and increasing explainability. Our code is available at https://github.com/jingyzhang/S3R .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助稳重的雅绿采纳,获得10
刚刚
刚刚
ty完成签到,获得积分10
刚刚
baobaot发布了新的文献求助10
刚刚
Yi完成签到,获得积分10
刚刚
刚刚
刚刚
搜集达人应助luym采纳,获得10
1秒前
1秒前
完美世界应助555采纳,获得10
1秒前
小二郎应助jl采纳,获得10
1秒前
1秒前
呼安完成签到,获得积分10
1秒前
1秒前
2秒前
isabelwy完成签到,获得积分10
2秒前
2秒前
2秒前
Faith完成签到,获得积分10
3秒前
可爱的弘文完成签到,获得积分10
3秒前
3秒前
3秒前
乔木木完成签到,获得积分10
3秒前
3秒前
小飞鼠发布了新的文献求助10
3秒前
唐飒发布了新的文献求助10
3秒前
痴痴的噜完成签到,获得积分10
4秒前
4秒前
rouxi发布了新的文献求助10
4秒前
能干冰露完成签到,获得积分10
4秒前
4秒前
猴哥完成签到,获得积分10
4秒前
5秒前
无私鹏涛完成签到,获得积分10
5秒前
Criminology34应助Tian采纳,获得10
5秒前
6秒前
唐文硕发布了新的文献求助10
6秒前
6秒前
fhz发布了新的文献求助20
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836