Energy or Accuracy? Near-Optimal User Selection and Aggregator Placement for Federated Learning in MEC

计算机科学 上传 新闻聚合器 后悔 能源消耗 机器学习 能量(信号处理) 人工智能 选择算法 近似算法 选择(遗传算法) 算法 统计 操作系统 生物 数学 生态学
作者
Zichuan Xu,Dongrui Li,Weifa Liang,Wenzheng Xu,Qiufen Xia,Pan Zhou,Omer Rana,Hao Li
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (3): 2470-2485 被引量:7
标识
DOI:10.1109/tmc.2023.3262829
摘要

To unveil the hidden value in the datasets of user equipments (UEs) while preserving user privacy, federated learning (FL) is emerging as a promising technique to train a machine learning model using the datasets of UEs locally without uploading the datasets to a central location. Customers require to train machine learning models based on different datasets of UEs, through issuing FL requests that are implemented by FL services in a mobile edge computing (MEC) network. A key challenge of enabling FL in MEC networks is how to minimize the energy consumption of implementing FL requests while guaranteeing the accuracy of machine learning models, given that the availabilities of UEs usually are uncertain. In this paper, we investigate the problem of energy minimization for FL in an MEC network with uncertain availabilities of UEs. We first consider the energy minimization problem for a single FL request in an MEC network. We then propose a novel optimization framework for the problem with a single FL request, which consists of (1) an online learning algorithm with a bounded regret for the UE selection, by considering various contexts (side information) that influence energy consumption; and (2) an approximation algorithm with an approximation ratio for the aggregator placement for a single FL request. We thirdly deal with the problem with multiple FL requests, for which we devise an online learning algorithm with a bounded regret. We finally evaluate the performance of the proposed algorithms by extensive experiments. Experimental results show that the proposed algorithms outperform their counterparts by reducing at least 13% of the total energy consumption while achieving the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪皮带完成签到,获得积分20
刚刚
ymX发布了新的文献求助10
1秒前
分风吹完成签到 ,获得积分10
1秒前
bkagyin应助陈泽宇采纳,获得10
2秒前
hahawaha发布了新的文献求助50
2秒前
Orange应助Jennyylz采纳,获得10
5秒前
6秒前
liu完成签到,获得积分10
6秒前
萤火之森给萤火之森的求助进行了留言
6秒前
飘飘完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
灵巧的大开完成签到,获得积分10
10秒前
HHHSean发布了新的文献求助10
11秒前
zxd1999完成签到,获得积分10
11秒前
木易心完成签到,获得积分10
12秒前
香蕉觅云应助ernest采纳,获得30
12秒前
852应助坚定的语芙采纳,获得10
14秒前
15秒前
15秒前
16秒前
npknpk发布了新的文献求助10
16秒前
16秒前
端庄的煎蛋完成签到,获得积分0
17秒前
18秒前
陈泽宇发布了新的文献求助10
18秒前
瀚泛完成签到,获得积分10
18秒前
19秒前
19秒前
wuliumu发布了新的文献求助10
19秒前
鳗鱼飞船发布了新的文献求助10
20秒前
顺顺新悦发布了新的文献求助10
20秒前
20秒前
李健的小迷弟应助陈大海采纳,获得10
21秒前
21秒前
哭泣乌完成签到,获得积分10
22秒前
22秒前
大模型应助Yoo采纳,获得10
22秒前
daisies应助CHB只争朝夕采纳,获得20
23秒前
现代的访曼应助哈哈哈采纳,获得20
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868