Energy or Accuracy? Near-Optimal User Selection and Aggregator Placement for Federated Learning in MEC

计算机科学 上传 新闻聚合器 后悔 能源消耗 机器学习 能量(信号处理) 人工智能 选择算法 近似算法 选择(遗传算法) 算法 生态学 统计 数学 生物 操作系统
作者
Zichuan Xu,Dongrui Li,Weifa Liang,Wenzheng Xu,Qiufen Xia,Pan Zhou,Omer Rana,Hao Li
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2470-2485 被引量:7
标识
DOI:10.1109/tmc.2023.3262829
摘要

To unveil the hidden value in the datasets of user equipments (UEs) while preserving user privacy, federated learning (FL) is emerging as a promising technique to train a machine learning model using the datasets of UEs locally without uploading the datasets to a central location. Customers require to train machine learning models based on different datasets of UEs, through issuing FL requests that are implemented by FL services in a mobile edge computing (MEC) network. A key challenge of enabling FL in MEC networks is how to minimize the energy consumption of implementing FL requests while guaranteeing the accuracy of machine learning models, given that the availabilities of UEs usually are uncertain. In this paper, we investigate the problem of energy minimization for FL in an MEC network with uncertain availabilities of UEs. We first consider the energy minimization problem for a single FL request in an MEC network. We then propose a novel optimization framework for the problem with a single FL request, which consists of (1) an online learning algorithm with a bounded regret for the UE selection, by considering various contexts (side information) that influence energy consumption; and (2) an approximation algorithm with an approximation ratio for the aggregator placement for a single FL request. We thirdly deal with the problem with multiple FL requests, for which we devise an online learning algorithm with a bounded regret. We finally evaluate the performance of the proposed algorithms by extensive experiments. Experimental results show that the proposed algorithms outperform their counterparts by reducing at least 13% of the total energy consumption while achieving the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyuchen发布了新的文献求助10
1秒前
ipeakkka完成签到,获得积分20
3秒前
马克发布了新的文献求助10
3秒前
赵OO完成签到,获得积分10
3秒前
Yon完成签到 ,获得积分10
4秒前
呆头完成签到,获得积分10
4秒前
科研通AI5应助skier采纳,获得10
5秒前
ywang发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
keyantong完成签到 ,获得积分10
11秒前
booshu完成签到,获得积分10
12秒前
jy发布了新的文献求助10
13秒前
朴斓完成签到,获得积分10
13秒前
科研通AI5应助魏伯安采纳,获得10
16秒前
哈密哈密完成签到,获得积分10
16秒前
16秒前
Ava应助浪迹天涯采纳,获得10
16秒前
17秒前
安南发布了新的文献求助10
17秒前
18秒前
healthy完成签到 ,获得积分10
18秒前
19秒前
刘大可完成签到,获得积分10
19秒前
22秒前
su发布了新的文献求助10
22秒前
rookie发布了新的文献求助10
23秒前
方勇飞发布了新的文献求助10
24秒前
郭菱香完成签到 ,获得积分20
24秒前
皮念寒完成签到,获得积分10
24秒前
顺其自然_666888完成签到,获得积分10
24秒前
25秒前
向上的小v完成签到 ,获得积分10
26秒前
26秒前
28秒前
酷酷紫蓝完成签到 ,获得积分10
28秒前
28秒前
方勇飞完成签到,获得积分10
28秒前
LYZ完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824