Energy or Accuracy? Near-Optimal User Selection and Aggregator Placement for Federated Learning in MEC

计算机科学 上传 新闻聚合器 后悔 能源消耗 机器学习 能量(信号处理) 人工智能 选择算法 近似算法 选择(遗传算法) 算法 生态学 统计 数学 生物 操作系统
作者
Zichuan Xu,Dongrui Li,Weifa Liang,Wenzheng Xu,Qiufen Xia,Pan Zhou,Omer Rana,Hao Li
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2470-2485 被引量:7
标识
DOI:10.1109/tmc.2023.3262829
摘要

To unveil the hidden value in the datasets of user equipments (UEs) while preserving user privacy, federated learning (FL) is emerging as a promising technique to train a machine learning model using the datasets of UEs locally without uploading the datasets to a central location. Customers require to train machine learning models based on different datasets of UEs, through issuing FL requests that are implemented by FL services in a mobile edge computing (MEC) network. A key challenge of enabling FL in MEC networks is how to minimize the energy consumption of implementing FL requests while guaranteeing the accuracy of machine learning models, given that the availabilities of UEs usually are uncertain. In this paper, we investigate the problem of energy minimization for FL in an MEC network with uncertain availabilities of UEs. We first consider the energy minimization problem for a single FL request in an MEC network. We then propose a novel optimization framework for the problem with a single FL request, which consists of (1) an online learning algorithm with a bounded regret for the UE selection, by considering various contexts (side information) that influence energy consumption; and (2) an approximation algorithm with an approximation ratio for the aggregator placement for a single FL request. We thirdly deal with the problem with multiple FL requests, for which we devise an online learning algorithm with a bounded regret. We finally evaluate the performance of the proposed algorithms by extensive experiments. Experimental results show that the proposed algorithms outperform their counterparts by reducing at least 13% of the total energy consumption while achieving the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈绫应助wodel采纳,获得10
1秒前
破晓之照完成签到,获得积分10
1秒前
无花果应助健忘的翠柏采纳,获得10
1秒前
搜集达人应助12345采纳,获得10
1秒前
左丘山河发布了新的文献求助10
1秒前
2秒前
陈居居完成签到,获得积分10
2秒前
黑森林完成签到,获得积分10
2秒前
研友_VZG7GZ应助沉默的钻石采纳,获得10
2秒前
2秒前
veronica完成签到,获得积分10
3秒前
英俊的鼠标完成签到,获得积分20
3秒前
慕青应助幸福的凡灵采纳,获得10
3秒前
善学以致用应助tommy0133采纳,获得10
4秒前
沧海云完成签到 ,获得积分10
4秒前
咕咕咕完成签到 ,获得积分10
4秒前
初静完成签到 ,获得积分10
4秒前
4秒前
veronica发布了新的文献求助10
5秒前
关关完成签到,获得积分10
5秒前
美满的晓丝完成签到,获得积分10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
斯文败类应助可乐采纳,获得30
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
ASZXDW应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
dingxy1009完成签到,获得积分10
7秒前
简单发布了新的文献求助10
7秒前
aaronvarter发布了新的文献求助10
7秒前
俊逸飞雪发布了新的文献求助10
7秒前
7秒前
Blummer完成签到,获得积分10
7秒前
虚拟的秋寒完成签到,获得积分10
8秒前
晓晓雪发布了新的文献求助10
8秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171904
求助须知:如何正确求助?哪些是违规求助? 2822654
关于积分的说明 7941818
捐赠科研通 2483582
什么是DOI,文献DOI怎么找? 1323166
科研通“疑难数据库(出版商)”最低求助积分说明 633862
版权声明 602647