Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics

雷亚克夫 高密度聚乙烯 分子动力学 热解 聚乙烯 材料科学 热解炭 工作(物理) 化学动力学 聚合物 热力学 动力学 化学 计算化学 有机化学 复合材料 物理 原子间势 量子力学
作者
Xiaolong Liu,Xiaoxia Li,Jian Liu,Ze Wang,Bin Kong,Xiaomin Gong,Xiaozhen Yang,Weigang Lin,Li Guo
出处
期刊:Polymer Degradation and Stability [Elsevier]
卷期号:104: 62-70 被引量:137
标识
DOI:10.1016/j.polymdegradstab.2014.03.022
摘要

PE pyrolysis is considered as an important process for converting plastic solid waste into fuel or other valuable chemicals to alleviate the environmental burdens. A computational approach can be of help for fully understanding the mechanisms and reaction pathways during PE pyrolysis in various industrial applications. In this paper, ReaxFF molecular dynamics was for the first time applied in simulating the pyrolysis of a High Density Polyethylene (HDPE) model system with 7216 atoms. Detailed reaction mechanisms and generation pathways of primary gas molecules were obtained by further analysis of the trajectories within a total of 250 ps simulation in NVT ensemble at 2000–3000 K using a newly created program, VARMD. The product profile and primary gas products evolution tendencies with temperature agree reasonably with the observations in Py-GC/MS experiments and literature data. The overall kinetics of ∼ C31 were analyzed and used to predict the reaction time for 90% weight loss of HDPE thermolysis that falls in around the reported time observed experimentally in the literatures. The reaction mechanisms based on the detailed reactions from the simulation trajectories are in broad agreement with what reported in literatures. The work presented here validates that ReaxFF MD is a promising method to help building a systematic understanding of the detailed chemical reactions in pyrolytic process for polymers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谢完成签到,获得积分10
1秒前
lidialon发布了新的文献求助10
1秒前
可爱的函函应助依依采纳,获得10
2秒前
2秒前
2秒前
不吃葱姜完成签到,获得积分10
2秒前
晨晨发布了新的文献求助10
2秒前
木偶完成签到 ,获得积分10
3秒前
3秒前
共享精神应助万海采纳,获得10
4秒前
ff完成签到,获得积分10
6秒前
6秒前
不吃葱姜发布了新的文献求助10
7秒前
汪小白发布了新的文献求助30
7秒前
酷波er应助miketyson采纳,获得10
8秒前
lidialon完成签到,获得积分10
8秒前
NexusExplorer应助和谐尔阳采纳,获得10
9秒前
9秒前
CipherSage应助wind采纳,获得10
9秒前
劲秉应助ca0ca0采纳,获得30
10秒前
10秒前
852应助科研通管家采纳,获得10
11秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
cc应助科研通管家采纳,获得28
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
tuanheqi应助科研通管家采纳,获得150
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
cc应助科研通管家采纳,获得10
12秒前
12秒前
阔达的凡发布了新的文献求助10
12秒前
Ming关注了科研通微信公众号
12秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3185575
求助须知:如何正确求助?哪些是违规求助? 2835856
关于积分的说明 8006872
捐赠科研通 2498416
什么是DOI,文献DOI怎么找? 1333430
科研通“疑难数据库(出版商)”最低求助积分说明 636865
邀请新用户注册赠送积分活动 604590