The origins and later developments of molecular orbital theory

双原子分子 分子轨道理论 价键理论 波函数 分子轨道 化学 原子轨道 斯莱特型轨道 分子轨道图 斯莱特行列式 量子力学 非键轨道 原子物理学 原子轨道的线性组合 电子 物理 分子
作者
J.N. Murrell
出处
期刊:International Journal of Quantum Chemistry [Wiley]
卷期号:112 (17): 2875-2879 被引量:14
标识
DOI:10.1002/qua.23293
摘要

Abstract Hund in 1926 speculated on the assignment of quantum numbers for the electronic states of diatomic molecules, basing his assignments on the correlation between the diatomic states and those of the united atom limit. Mulliken, who had earlier considered the problem of this assignment using old quantum theory, followed Hund in 1927, in the new quantum theory, correlating the states of a diatomic molecule from the united to the separated atoms. In 1932, he introduced the term orbital for the one‐electron states of an atom or molecule. He was the first to seriously explore the orbitals of polyatomic molecules (1932). Burrau in 1927 made the first successful attempt to solve the Schrodinger's equation for H , and Condon (1927) assigned two electrons to Burrau's orbital to obtain an estimate of the binding energy of H 2 . Lennard‐Jones (LJ) (1929) introduced the linear combination of atomic orbital model, and following the aufbau principle showed that this explained the paramagnetism of O 2 . Slater (1929) wrote many‐electron wave functions as determinants of spin‐orbitals, and LJ (1949) showed that with this formulation molecular orbitals (MOs) could be transformed into bond‐localized functions; this provided the link to the valence bond approach and the traditional view of the chemical bond. Huckel (1930) was the first to develop a semiempirical MO model for π‐electron hydrocarbons, and this was later extended by others for all‐electron wave functions. Boys (1950) saw the implication of Gaussian functions for calculating the electron repulsion integrals needed for ab initio calculations, and a later approach by Kohn and coworkers (1964 and 1965) produced a density functional MO theory in which electron repulsion is calculated from the whole electron density. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KK发布了新的文献求助30
刚刚
娃娃完成签到 ,获得积分20
刚刚
科研通AI5应助结实的冰真采纳,获得30
刚刚
冷静的小熊猫完成签到,获得积分10
1秒前
Donnie完成签到,获得积分10
1秒前
若尘完成签到,获得积分10
2秒前
椰子完成签到 ,获得积分10
2秒前
2秒前
细腻涵菱完成签到,获得积分10
3秒前
吕耀炜完成签到,获得积分10
3秒前
3秒前
3秒前
简称王完成签到 ,获得积分10
3秒前
蓝莓松饼完成签到,获得积分10
4秒前
一路高飛完成签到,获得积分10
4秒前
赘婿应助andyxrz采纳,获得10
4秒前
Zhang完成签到,获得积分10
4秒前
5秒前
年轻冥茗完成签到,获得积分10
5秒前
apple发布了新的文献求助10
6秒前
CarterXD完成签到,获得积分10
6秒前
紧张的友灵完成签到,获得积分10
6秒前
SciGPT应助之仔饼采纳,获得10
7秒前
liudiqiu应助追寻的易烟采纳,获得10
7秒前
Chem is try发布了新的文献求助10
7秒前
7秒前
vsoar完成签到,获得积分10
7秒前
8秒前
9秒前
GGGGGGGGGG发布了新的文献求助10
9秒前
9秒前
打打应助hhh采纳,获得10
10秒前
抓恐龙关注了科研通微信公众号
10秒前
碳点godfather完成签到,获得积分10
10秒前
ren完成签到,获得积分20
10秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
11秒前
TG_FY完成签到,获得积分10
11秒前
11秒前
hhh完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672