可靠性(半导体)
光伏系统
表征(材料科学)
可靠性工程
热成像
过程(计算)
担保
计算机科学
无损检测
电子工程
汽车工程
材料科学
机械工程
电气工程
工程类
功率(物理)
操作系统
光学
物理
放射科
红外线的
纳米技术
法学
医学
量子力学
政治学
作者
Martin Sander,B. L. Henke,Stefan Schweizer,Matthias Ebert,J. Bagdahn
标识
DOI:10.1109/pvsc.2010.5615878
摘要
The lifetime and reliability of photovoltaic modules (PV modules) is influenced by defects which have their origin either in manufacturing processes or in operation exposure. Characterization of PV modules is necessary for manufacturers to assure their warranty and to observe process difficulties during production process and for improving their modules during development processes. For customers PV module characterization is important to observe output performance of their PV system and to proof intactness of single modules. For this purpose reliable and nondestructive testing methods are desirable. This contribution gives an overview over PV module defects detected by different characterization methods. By comparing the different methods their suitability to detect certain defects is assessed. Some methods are already standard in solar cell inspection like electroluminescence or thermography and are used on module scale in this work. Other methods like Laser-Doppler vibrometry are used for mechanical purposes and shall be used to determine mechanical parameters of PV modules as a mechanical element. The expansion of these methods by further analysis techniques like digital image correlation techniques allows a very precise assessment of the mechanical and electrical capability which is essential for reliability and lifetime concepts. The observed defects are classified according their origin and their consequences on the overall performance of the device were checked. The influence of alternating thermal loads is presented exemplarily on an unframed thin-film test module.
科研通智能强力驱动
Strongly Powered by AbleSci AI