亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven approach using the remotely sensed soil moisture product to identify water-demand in agricultural regions

环境科学 含水量 灌溉 农业 农业工程 比例(比率) 农场用水 索引(排版) 水资源 用水 节约用水 遥感 水资源管理 水文学(农业) 计算机科学 地理 农学 生态学 工程类 岩土工程 地图学 考古 万维网 生物
作者
Gurjeet Singh,Narendra N. Das
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:837: 155893-155893 被引量:17
标识
DOI:10.1016/j.scitotenv.2022.155893
摘要

Effective agricultural water management requires accurate and timely identification of crop water stress at the farm-scale for irrigation advisories or to allocate the optimal amount of water for irrigation. Various drought indices are being utilized to map the water-stressed locations/farms in agricultural regions. Most of these existing drought indices provide some degree of characterization of water stress but do not adequately provide spatially resolved high-resolution (farm-scale) information for decision-making about irrigation advisories or water allocation. These existing drought indices need modeling and climatology information, hence making them data-intensive and complex to compute. Therefore, a reliable, simple, and computationally easy method without modeling to characterize the water stress at high-resolution is essential for the operational mapping of water-stressed farms in agricultural regions. The proposed new approach facilitates improved and quick decision-making without compromising much of the skills imparted by the established drought indices. This study aims to formulate a water-demand index (WDI) based on a parameter-independent data-driven approach using readily available remote sensing observations and weather data. We hypothesize that the WDI for an agricultural domain can be characterized by soil moisture, vegetative growth (NDVI), and heat unit (growing degree day, GDD). To this end, we used remote sensing-based soil moisture and NDVI and modeled ambient temperature datasets to generate weekly WDI maps at 1 km. The proposed methodology is verified over a few intensively irrigated agricultural-dominated areas with different climatic conditions. Our results suggest that the proposed approach characterizes water-stressed fields through WDI maps with good spatial representativeness. Overall, this study provides a framework to generate weekly WDI maps quickly with readily available measurements. These water-demand maps will help water resource managers to reduce dependence on established drought indices and prioritize the specific regions/fields with high water demand for optimum water allocations to improve crop health and ultimately maximize water-use efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
karstbing发布了新的文献求助10
4秒前
cy0824完成签到 ,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
2分钟前
小唐完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
3分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
啸西风完成签到,获得积分10
5分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
William完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139