亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven approach using the remotely sensed soil moisture product to identify water-demand in agricultural regions

环境科学 含水量 灌溉 农业 农业工程 比例(比率) 农场用水 索引(排版) 水资源 用水 节约用水 遥感 水资源管理 水文学(农业) 计算机科学 地理 生态学 工程类 岩土工程 地图学 考古 万维网 生物
作者
Gurjeet Singh,Narendra N. Das
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:837: 155893-155893 被引量:9
标识
DOI:10.1016/j.scitotenv.2022.155893
摘要

Effective agricultural water management requires accurate and timely identification of crop water stress at the farm-scale for irrigation advisories or to allocate the optimal amount of water for irrigation. Various drought indices are being utilized to map the water-stressed locations/farms in agricultural regions. Most of these existing drought indices provide some degree of characterization of water stress but do not adequately provide spatially resolved high-resolution (farm-scale) information for decision-making about irrigation advisories or water allocation. These existing drought indices need modeling and climatology information, hence making them data-intensive and complex to compute. Therefore, a reliable, simple, and computationally easy method without modeling to characterize the water stress at high-resolution is essential for the operational mapping of water-stressed farms in agricultural regions. The proposed new approach facilitates improved and quick decision-making without compromising much of the skills imparted by the established drought indices. This study aims to formulate a water-demand index (WDI) based on a parameter-independent data-driven approach using readily available remote sensing observations and weather data. We hypothesize that the WDI for an agricultural domain can be characterized by soil moisture, vegetative growth (NDVI), and heat unit (growing degree day, GDD). To this end, we used remote sensing-based soil moisture and NDVI and modeled ambient temperature datasets to generate weekly WDI maps at 1 km. The proposed methodology is verified over a few intensively irrigated agricultural-dominated areas with different climatic conditions. Our results suggest that the proposed approach characterizes water-stressed fields through WDI maps with good spatial representativeness. Overall, this study provides a framework to generate weekly WDI maps quickly with readily available measurements. These water-demand maps will help water resource managers to reduce dependence on established drought indices and prioritize the specific regions/fields with high water demand for optimum water allocations to improve crop health and ultimately maximize water-use efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助LOKI采纳,获得10
1秒前
斯文的苡完成签到,获得积分10
10秒前
11秒前
13秒前
16秒前
17秒前
戴哈哈发布了新的文献求助10
18秒前
MisTerZhang发布了新的文献求助10
22秒前
科研通AI2S应助戴哈哈采纳,获得10
22秒前
ganson完成签到 ,获得积分10
45秒前
53秒前
56秒前
LOKI发布了新的文献求助10
1分钟前
1分钟前
LOKI完成签到,获得积分10
1分钟前
乐乐应助彭佳丽采纳,获得10
1分钟前
戴哈哈发布了新的文献求助10
1分钟前
酷波er应助XH采纳,获得10
1分钟前
上官若男应助戴哈哈采纳,获得10
1分钟前
1分钟前
彭佳丽发布了新的文献求助10
1分钟前
XH完成签到,获得积分10
1分钟前
1分钟前
XH发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助在明理摸鱼采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
戴哈哈发布了新的文献求助10
2分钟前
2分钟前
yang发布了新的文献求助10
2分钟前
稚北森林发布了新的文献求助10
2分钟前
OxO完成签到,获得积分10
3分钟前
乐乐应助稚北森林采纳,获得10
3分钟前
3分钟前
yang完成签到,获得积分10
3分钟前
申木完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064468
关于积分的说明 9088179
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511803
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698473