AI recognition of patient race in medical imaging: a modelling study

医学 深度学习 人工智能 医学影像学 混淆 人口 接收机工作特性 模式 机器学习 计算机科学 病理 社会科学 环境卫生 社会学
作者
Judy Wawira Gichoya,Imon Banerjee,Ananth Reddy Bhimireddy,John L. Burns,Leo Anthony Celi,Li-Ching Chen,Ramón Correa,Natalie Dullerud,Marzyeh Ghassemi,Shih-Cheng Huang,Po‐Chih Kuo,Matthew P. Lungren,Lyle J. Palmer,Brandon J. Price,Saptarshi Purkayastha,Ayis Pyrros,Lauren Oakden‐Rayner,Chima Okechukwu,Laleh Seyyed-Kalantari,Hari Trivedi,Ryan Wang,Zachary Zaiman,Haoran Zhang
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (6): e406-e414 被引量:282
标识
DOI:10.1016/s2589-7500(22)00063-2
摘要

Background: In medical imaging, prior studies have demonstrated disparate AI performance by race, yet there is no known correlation for race on medical imaging that would be obvious to the human expert interpreting the images. Methods: Using private and public datasets we evaluate: A) performance quantification of deep learning models to detect race from medical images, including the ability of these models to generalize to external environments and across multiple imaging modalities, B) assessment of possible confounding anatomic and phenotype population features, such as disease distribution and body habitus as predictors of race, and C) investigation into the underlying mechanism by which AI models can recognize race. Findings: Standard deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities. Our findings hold under external validation conditions, as well as when models are optimized to perform clinically motivated tasks. We demonstrate this detection is not due to trivial proxies or imaging-related surrogate covariates for race, such as underlying disease distribution. Finally, we show that performance persists over all anatomical regions and frequency spectrum of the images suggesting that mitigation efforts will be challenging and demand further study. Interpretation: We emphasize that model ability to predict self-reported race is itself not the issue of importance. However, our findings that AI can trivially predict self-reported race -- even from corrupted, cropped, and noised medical images -- in a setting where clinical experts cannot, creates an enormous risk for all model deployments in medical imaging: if an AI model secretly used its knowledge of self-reported race to misclassify all Black patients, radiologists would not be able to tell using the same data the model has access to.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲍文启完成签到 ,获得积分10
3秒前
心静如水发布了新的文献求助10
3秒前
我要资料啊完成签到,获得积分10
7秒前
Steven发布了新的文献求助30
7秒前
8秒前
摘星012发布了新的文献求助10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
HarryQ完成签到,获得积分10
11秒前
19秒前
20秒前
科研通AI2S应助mmw采纳,获得10
23秒前
七七完成签到 ,获得积分10
24秒前
24秒前
快快乐乐发布了新的文献求助10
26秒前
宁静致远完成签到,获得积分10
27秒前
schen完成签到 ,获得积分10
29秒前
小小怪发布了新的文献求助10
31秒前
31秒前
Chnn完成签到 ,获得积分10
32秒前
Running发布了新的文献求助10
33秒前
opticsLM完成签到,获得积分10
33秒前
枫叶完成签到 ,获得积分10
34秒前
小小怪完成签到,获得积分10
35秒前
37秒前
寒江月发布了新的文献求助10
38秒前
幻影阡曦发布了新的文献求助10
39秒前
39秒前
欸嘿发布了新的文献求助10
43秒前
阎万仇完成签到,获得积分10
46秒前
ads发布了新的文献求助10
47秒前
快快乐乐完成签到,获得积分10
49秒前
寒江月完成签到,获得积分10
51秒前
harley完成签到,获得积分10
55秒前
王果果发布了新的文献求助10
55秒前
Steven发布了新的文献求助10
58秒前
qiaoxixi发布了新的文献求助10
59秒前
1分钟前
心静如水发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374164
求助须知:如何正确求助?哪些是违规求助? 2991213
关于积分的说明 8744276
捐赠科研通 2674885
什么是DOI,文献DOI怎么找? 1465388
科研通“疑难数据库(出版商)”最低求助积分说明 677841
邀请新用户注册赠送积分活动 669411