Bayesian dynamic learning and pricing with strategic customers

后悔 收益管理 斯塔克伯格竞赛 估价(财务) 收入 动态定价 微观经济学 产品(数学) 贝叶斯博弈 计算机科学 营销 业务 经济 博弈论 序贯博弈 几何学 会计 机器学习 数学 财务
作者
Xi Chen,Jianjun Gao,Dongdong Ge,Zizhuo Wang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (8): 3125-3142 被引量:10
标识
DOI:10.1111/poms.13741
摘要

We consider a seller who repeatedly sells a nondurable product to a single customer whose valuations of the product are drawn from a certain distribution. The seller, who initially does not know the valuation distribution, may use the customer's purchase history to learn and wishes to choose a pricing policy that maximizes her long‐run revenue. Such a problem is at the core of personalized revenue management where the seller can access each customer's individual purchase history and offer personalized prices. In this paper, we study such a learning problem when the customer is aware of the seller's policy and thus may behave strategically when making a purchase decision. By using a Bayesian setting with a binary prior, we first show that a popular policy in this setting—the myopic Bayesian policy (MBP)—may lead to incomplete learning of the seller, namely, the seller may never be able to ascertain the true type of the customer and the regret may grow linearly over time. The failure of the MBP is due to the strategic action taken by the customer. To address the strategic behavior of the customers, we first analyze a Stackelberg game under a two‐period model. We derive the optimal policy of the seller in the two‐period model and show that the regret can be significantly reduced by using the optimal policy rather than the myopic policy. However, such a game is hard to analyze in general. Nevertheless, based on the idea used in the two‐period model, we propose a randomized Bayesian policy (RBP), which updates the posterior belief of the customer in each period with a certain probability, as well as a deterministic Bayesian policy (DBP), in which the seller updates the posterior belief periodically and always defers her update to the next cycle. For both the RBP and DBP, we show that the seller can learn the customer type exponentially fast even if the customer is strategic, and the regret is bounded by a constant. We also propose policies that achieve asymptotically optimal regrets when only a finite number of price changes are allowed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuqianyuan完成签到,获得积分20
刚刚
1秒前
noyal完成签到,获得积分10
1秒前
张小馨完成签到 ,获得积分10
2秒前
Sifan完成签到,获得积分10
2秒前
完美世界应助李向来采纳,获得10
2秒前
Jasper应助jzyy采纳,获得10
2秒前
乐观化蛹完成签到,获得积分10
3秒前
4秒前
lsq108发布了新的文献求助10
5秒前
神勇秋白完成签到,获得积分0
7秒前
muyingleng应助轻松金鱼采纳,获得20
7秒前
悦影徜徉完成签到 ,获得积分10
8秒前
大模型应助xiaogang127采纳,获得10
8秒前
香蕉觅云应助xiaogang127采纳,获得10
8秒前
传奇3应助xiaogang127采纳,获得10
9秒前
SciGPT应助xiaogang127采纳,获得30
9秒前
bkagyin应助xiaogang127采纳,获得10
9秒前
董浩应助田田田田采纳,获得10
9秒前
三土完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503