Bayesian dynamic learning and pricing with strategic customers

后悔 收益管理 斯塔克伯格竞赛 估价(财务) 收入 动态定价 微观经济学 产品(数学) 贝叶斯博弈 计算机科学 营销 业务 经济 博弈论 序贯博弈 几何学 会计 机器学习 数学 财务
作者
Xi Chen,Jianjun Gao,Dongdong Ge,Zizhuo Wang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (8): 3125-3142 被引量:10
标识
DOI:10.1111/poms.13741
摘要

We consider a seller who repeatedly sells a nondurable product to a single customer whose valuations of the product are drawn from a certain distribution. The seller, who initially does not know the valuation distribution, may use the customer's purchase history to learn and wishes to choose a pricing policy that maximizes her long‐run revenue. Such a problem is at the core of personalized revenue management where the seller can access each customer's individual purchase history and offer personalized prices. In this paper, we study such a learning problem when the customer is aware of the seller's policy and thus may behave strategically when making a purchase decision. By using a Bayesian setting with a binary prior, we first show that a popular policy in this setting—the myopic Bayesian policy (MBP)—may lead to incomplete learning of the seller, namely, the seller may never be able to ascertain the true type of the customer and the regret may grow linearly over time. The failure of the MBP is due to the strategic action taken by the customer. To address the strategic behavior of the customers, we first analyze a Stackelberg game under a two‐period model. We derive the optimal policy of the seller in the two‐period model and show that the regret can be significantly reduced by using the optimal policy rather than the myopic policy. However, such a game is hard to analyze in general. Nevertheless, based on the idea used in the two‐period model, we propose a randomized Bayesian policy (RBP), which updates the posterior belief of the customer in each period with a certain probability, as well as a deterministic Bayesian policy (DBP), in which the seller updates the posterior belief periodically and always defers her update to the next cycle. For both the RBP and DBP, we show that the seller can learn the customer type exponentially fast even if the customer is strategic, and the regret is bounded by a constant. We also propose policies that achieve asymptotically optimal regrets when only a finite number of price changes are allowed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GYGeorge发布了新的文献求助10
刚刚
刚刚
阿籽完成签到,获得积分10
刚刚
刚刚
1秒前
阿爽发布了新的文献求助10
1秒前
2秒前
lucky完成签到,获得积分10
2秒前
2秒前
深情安青应助水天采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
啦啦咔嘞完成签到,获得积分10
4秒前
4秒前
anesthesist发布了新的文献求助10
5秒前
Wang发布了新的文献求助10
5秒前
6秒前
6秒前
又是一年完成签到,获得积分10
7秒前
7秒前
述说完成签到 ,获得积分10
7秒前
8秒前
8秒前
爱卿5271完成签到,获得积分10
8秒前
8秒前
lizh187完成签到 ,获得积分10
9秒前
swccj完成签到,获得积分10
9秒前
李健的小迷弟应助李大侠采纳,获得10
10秒前
未央完成签到,获得积分10
10秒前
大模型应助lilila666采纳,获得10
10秒前
10秒前
11秒前
果实发布了新的文献求助10
11秒前
研友_VZG7GZ应助猫猫采纳,获得10
11秒前
完美世界应助hhh采纳,获得10
12秒前
无聊的火龙果应助tigger采纳,获得40
12秒前
水天完成签到,获得积分10
12秒前
hi应助郭苏仪采纳,获得20
13秒前
swccj发布了新的文献求助10
13秒前
李大力发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128