亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI

计算机科学 人工智能 卷积神经网络 背景(考古学) 模式识别(心理学) 卷积(计算机科学) 核(代数) 块(置换群论) 深度学习 人工神经网络 机器学习 古生物学 几何学 数学 组合数学 生物
作者
Zhao Pei,Zhiyang Wan,Yanning Zhang,Miao Wang,Chengcai Leng,Yee‐Hong Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:131: 108825-108825 被引量:31
标识
DOI:10.1016/j.patcog.2022.108825
摘要

Recently, deep learning based Computer-Aided Diagnosis methods have been widely utilized due to their highly effective diagnosis of patients. Although Convolutional Neural Networks (CNNs) are capable of extracting the latent structural characteristics of dementia and of capturing the changes of brain anatomy in Magnetic Resonance Imaging (MRI) scans, the high-dimensional input to a deep CNN usually makes the network difficult to train, and affects its diagnostic accuracy. In this paper, a novel method called the hierarchical pseudo-3D convolution neural network based on a kernel attention mechanism with a new global context block, which is abbreviated as “PKG-Net”, is proposed to accurately predict Alzheimer’s disease even when the input features are complex. Specifically, the proposed network first extracts multi-scale features from pre-processed images. Second, the attention mechanism and global context blocks are applied to combine features from different layers to hierarchically transform the MRI into more compact high-level features. Then, a joint loss function is used to train the proposed network to generate more distinguishing features, which improve the generalization performance of the network. In addition, we combine our method with different architectures. Extensive experiments are conducted to analyze the performance of the PKG-Net with different hyper-parameters and architectures. Finally, in order to verify the effectiveness of our method on Alzheimer’s disease diagnosis, we carry out extensive experiments on the ADNI dataset, and compare the results of our method with that of existing methods in terms of accuracy, recall and precision. Furthermore, our network can fully take advantage of the deep 3D convolutional neural network for automatic feature extraction and representation, and thus can avoid the limitation of low processing efficiency caused by the preprocessing procedure in which a specific area needs to be annotated in advance. Finally, we evaluate our proposed framework using two public datasets, ADNI-1 and ADNI-2, and the experimental results show that our proposed framework can achieve superior performance over state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tracyzhang完成签到 ,获得积分10
12秒前
袁雪蓓完成签到 ,获得积分10
20秒前
ren完成签到,获得积分10
22秒前
糯米丸子完成签到,获得积分10
39秒前
fufu完成签到 ,获得积分10
44秒前
爆米花应助Reyi采纳,获得10
52秒前
MchemG应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
归尘应助科研通管家采纳,获得10
53秒前
归尘应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
归尘应助科研通管家采纳,获得10
53秒前
所所应助科研通管家采纳,获得10
53秒前
归尘应助科研通管家采纳,获得10
53秒前
53秒前
z1完成签到 ,获得积分10
57秒前
VDC发布了新的文献求助10
58秒前
1分钟前
Reyi发布了新的文献求助10
1分钟前
1分钟前
野菜生活发布了新的文献求助10
1分钟前
琪凯定理发布了新的文献求助10
1分钟前
小白发布了新的文献求助10
1分钟前
积极废物完成签到 ,获得积分10
1分钟前
abc完成签到 ,获得积分10
1分钟前
琪凯定理完成签到,获得积分10
1分钟前
科研通AI5应助shaco采纳,获得10
1分钟前
打游客嘴巴子完成签到,获得积分10
1分钟前
1分钟前
叶子的叶完成签到,获得积分10
1分钟前
哈哈发布了新的文献求助10
1分钟前
SciGPT应助白羽采纳,获得10
1分钟前
1分钟前
草莓发布了新的文献求助10
1分钟前
1分钟前
白羽发布了新的文献求助10
1分钟前
白羽完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778416
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990