Unraveling the Molecular Interface and Boundary Problems in an Electrical Double Layer and Electroosmotic Flow

电动现象 分子动力学 边界层 机械 流量(数学) 边值问题 边界(拓扑) 化学 化学物理 流速 粘度 材料科学 纳米技术 物理 热力学 计算化学 数学分析 数学 量子力学
作者
Md Masuduzzaman,BoHung Kim
出处
期刊:Langmuir [American Chemical Society]
卷期号:38 (23): 7244-7255 被引量:16
标识
DOI:10.1021/acs.langmuir.2c00734
摘要

In a nanofluidic system, the electroosmotic flow (EOF) is a complex fluid transport mechanism, where the formation of an electrical double layer (EDL) occurs ubiquitously at the dissimilar atomic interface. Several studies have suggested various interface boundaries to calculate the EDL thickness. However, the physical origin of the interface boundary and its effects on the flow properties is not yet clearly understood. Combining the theoretical framework and molecular dynamics (MD) simulations, we show the effects of different interfacial boundaries on the EDL thickness and EOF characteristics. Implemented interface boundaries exhibit the EDL thickness-boundary relation, i.e., the EDL thickness from MD simulations shows the tendency of converging toward the continuum approximation. Furthermore, inserting these values of EDL thicknesses into the continuum equation shows the convergence of flow transition of the molecular state to a neutral from an electrical violation phase, which takes a parabolic to plug-like shape in the velocity profile. Different interface boundaries also affect the hydrodynamic properties (viscosity and electroviscosity) of EOF, which varies from the bulk to interface region, as well as the fluid flow. Therefore, we can infer that, at the molecular level, the dissimilar atomic boundary and hydrodynamic properties dominate the electrokinetic flow. Our simulation results and theoretical model provide fundamental insightful information and guidelines for the EOF study based on the atomic interface and dynamic structure-based hydrodynamic property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
雨夜星空完成签到,获得积分10
2秒前
饱满的半青完成签到 ,获得积分10
3秒前
3秒前
务实盼海发布了新的文献求助10
3秒前
Jouleken完成签到,获得积分10
3秒前
4秒前
zq00完成签到,获得积分10
4秒前
4秒前
斯文败类应助独木舟采纳,获得10
4秒前
易哒哒完成签到,获得积分10
4秒前
CCL应助QXS采纳,获得50
5秒前
大方安白完成签到,获得积分10
5秒前
Xxaaa完成签到,获得积分20
5秒前
张小敏完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
科研通AI2S应助Zhong采纳,获得10
7秒前
yidashi完成签到,获得积分10
7秒前
Kelvin.Tsi完成签到 ,获得积分10
7秒前
Island发布了新的文献求助10
8秒前
hu970发布了新的文献求助10
8秒前
九九发布了新的文献求助10
8秒前
123456完成签到,获得积分10
8秒前
BareBear应助龙妍琳采纳,获得10
8秒前
赘婿应助wary采纳,获得10
9秒前
小蘑菇应助wary采纳,获得10
9秒前
上官若男应助wary采纳,获得10
9秒前
李爱国应助木子采纳,获得10
9秒前
烟花应助马佳凯采纳,获得10
9秒前
9秒前
LYL完成签到,获得积分10
10秒前
10秒前
得意凡人完成签到,获得积分10
10秒前
10秒前
害怕的擎宇完成签到,获得积分10
11秒前
柳絮完成签到,获得积分20
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762