Developing early warning systems to predict water lead levels in tap water for private systems

水质 质量(理念) 环境科学 铅(地质) 供水 自来水 环境工程 生态学 生物 认识论 地貌学 地质学 哲学
作者
Mohammad Ali Khaksar Fasaee,Jorge E. Pesantez,Kelsey J. Pieper,Erin Ling,Brian Leslie Benham,Marc Edwards,Emily Zechman Berglund
出处
期刊:Water Research [Elsevier]
卷期号:221: 118787-118787 被引量:8
标识
DOI:10.1016/j.watres.2022.118787
摘要

Lead is a chemical contaminant that threatens public health, and high levels of lead have been identified in drinking water at locations across the globe. Under-served populations that use private systems for drinking water supplies may be at an elevated level of risk because utilities and governing agencies are not responsible for ensuring that lead levels meet the Lead and Copper Rule at these systems. Predictive models that can be used by residents to assess water quality threats in their households can create awareness of water lead levels (WLLs). This research explores and compares the use of statistical models (i.e., Bayesian Belief classifiers) and machine learning models (i.e., ensemble of decision trees) for predicting WLLs. Models are developed using a dataset collected by the Virginia Household Water Quality Program (VAHWQP) at approximately 8000 households in Virginia during 2012–2017. The dataset reports laboratory-tested water quality parameters at households, location information, and household and plumbing characteristics, including observations of water odor, taste, discoloration. Some water quality parameters, such as pH, iron, and copper, can be measured at low resolution by residents using at-home water test kits and can be used to predict risk of WLLs. The use of at-home water quality test kits was simulated through the discretization of water quality parameter measurements to match the resolution of at-home water quality test kits and the introduction of error in water quality readings. Using this approach, this research demonstrates that low-resolution data collected by residents can be used as input for models to estimate WLLs. Model predictability was explored for a set of at-home water quality test kits that observe a variety of water quality parameters and report parameters at a range of resolutions. The effects of the timing of water sampling (e.g., first-draw vs. flushed samples) and error in kits on model error were tested through simulations. The prediction models developed through this research provide a set of tools for private well users to assess the risk of lead contamination. Models can be implemented as early warning systems in citizen science and online platforms to improve awareness of drinking water threats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神志不清的衾完成签到,获得积分10
1秒前
1秒前
传奇3应助老迟到的小丸子采纳,获得10
1秒前
1秒前
3秒前
话梅气泡美式完成签到,获得积分10
3秒前
111应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
lx完成签到,获得积分10
5秒前
Uaena应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
evz应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
ChenWen完成签到,获得积分10
6秒前
寒月如雪发布了新的文献求助10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
111应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得30
7秒前
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
YangChunyan完成签到,获得积分10
7秒前
一一一应助陈平安采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
斯文败类应助L77采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957