Developing early warning systems to predict water lead levels in tap water for private systems

水质 质量(理念) 环境科学 铅(地质) 供水 自来水 环境工程 生态学 生物 认识论 地貌学 地质学 哲学
作者
Mohammad Ali Khaksar Fasaee,Jorge E. Pesantez,Kelsey J. Pieper,Erin Ling,Brian Leslie Benham,Marc Edwards,Emily Zechman Berglund
出处
期刊:Water Research [Elsevier]
卷期号:221: 118787-118787 被引量:8
标识
DOI:10.1016/j.watres.2022.118787
摘要

Lead is a chemical contaminant that threatens public health, and high levels of lead have been identified in drinking water at locations across the globe. Under-served populations that use private systems for drinking water supplies may be at an elevated level of risk because utilities and governing agencies are not responsible for ensuring that lead levels meet the Lead and Copper Rule at these systems. Predictive models that can be used by residents to assess water quality threats in their households can create awareness of water lead levels (WLLs). This research explores and compares the use of statistical models (i.e., Bayesian Belief classifiers) and machine learning models (i.e., ensemble of decision trees) for predicting WLLs. Models are developed using a dataset collected by the Virginia Household Water Quality Program (VAHWQP) at approximately 8000 households in Virginia during 2012–2017. The dataset reports laboratory-tested water quality parameters at households, location information, and household and plumbing characteristics, including observations of water odor, taste, discoloration. Some water quality parameters, such as pH, iron, and copper, can be measured at low resolution by residents using at-home water test kits and can be used to predict risk of WLLs. The use of at-home water quality test kits was simulated through the discretization of water quality parameter measurements to match the resolution of at-home water quality test kits and the introduction of error in water quality readings. Using this approach, this research demonstrates that low-resolution data collected by residents can be used as input for models to estimate WLLs. Model predictability was explored for a set of at-home water quality test kits that observe a variety of water quality parameters and report parameters at a range of resolutions. The effects of the timing of water sampling (e.g., first-draw vs. flushed samples) and error in kits on model error were tested through simulations. The prediction models developed through this research provide a set of tools for private well users to assess the risk of lead contamination. Models can be implemented as early warning systems in citizen science and online platforms to improve awareness of drinking water threats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
皛鑫森淼焱垚完成签到,获得积分10
刚刚
Marcus完成签到,获得积分10
1秒前
2秒前
xiumei1998完成签到,获得积分10
2秒前
Lazarus_x完成签到,获得积分10
2秒前
Migrol完成签到,获得积分10
2秒前
Leorihy19完成签到,获得积分10
2秒前
Gleaming完成签到,获得积分10
3秒前
3秒前
lmt发布了新的文献求助10
3秒前
一只蓉馍馍完成签到,获得积分10
3秒前
马上动起来完成签到,获得积分10
4秒前
蓝色雪狐完成签到,获得积分10
5秒前
无花果粒橙完成签到,获得积分10
5秒前
5秒前
ygl0217发布了新的文献求助10
6秒前
7秒前
9秒前
辛儿的毅完成签到,获得积分20
10秒前
10秒前
11秒前
weijiechi完成签到,获得积分10
11秒前
小太阳完成签到,获得积分10
12秒前
蓝胖子完成签到,获得积分20
12秒前
kai发布了新的文献求助10
12秒前
12秒前
默默无闻完成签到,获得积分10
13秒前
学呀学完成签到 ,获得积分10
13秒前
SYLH应助白洁渊采纳,获得10
14秒前
HF完成签到,获得积分10
14秒前
所所应助online1881采纳,获得10
14秒前
hanfuren发布了新的文献求助10
14秒前
开心的七完成签到,获得积分10
15秒前
意签完成签到,获得积分10
15秒前
脑洞疼应助melo采纳,获得10
16秒前
ommphey完成签到 ,获得积分10
16秒前
Mu丶tou完成签到,获得积分10
16秒前
孙非完成签到,获得积分10
16秒前
小萌完成签到,获得积分10
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471687
求助须知:如何正确求助?哪些是违规求助? 3064600
关于积分的说明 9089012
捐赠科研通 2755276
什么是DOI,文献DOI怎么找? 1511947
邀请新用户注册赠送积分活动 698621
科研通“疑难数据库(出版商)”最低求助积分说明 698494