SGKT: Session graph-based knowledge tracing for student performance prediction

计算机科学 会话(web分析) 图形 追踪 理论计算机科学 人工智能 机器学习 程序设计语言 万维网
作者
Zhengyang Wu,Li Huang,Qionghao Huang,Changqin Huang,Yong Tang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:206: 117681-117681 被引量:37
标识
DOI:10.1016/j.eswa.2022.117681
摘要

Knowledge tracing is a modeling method of students’ knowledge mastery. The deep knowledge tracing (DKT) model uses long short-term memory (LSTM) to process the sequence data of students exercises. However, the LSTM-based model pays more attention to the short-term response status of students while ignoring the long-term learning process. Moreover, existing graph-based knowledge tracing models focus on the static relationship between exercises and skills, ignoring the dynamic graphs formed by students exercises in a session. In this work, we propose a novel knowledge tracing model which is based on an exercise session graph, named session graph based knowledge tracing (SGKT). The session graph is used to model the students’ answering process. In addition, a relationship graph is used to model the relationship between exercises and skills. Then we use gated graph neural networks to obtain the students’ knowledge state from the session graph and use graph convolutional networks to obtain the embedding representations of exercises and skills in the relationship graph. Next, through the interaction mechanism, multiple interaction states composed of knowledge states and embedding representations are obtained. The attention mechanism is used to find the focus from these states and make predictions. Experiments are conducted on three publicly available datasets and the results show that our approach has advantages over some existing baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miyun发布了新的文献求助10
刚刚
我是老大应助blangel采纳,获得10
1秒前
积极的明天完成签到,获得积分20
1秒前
1秒前
CDH完成签到,获得积分10
2秒前
4秒前
4秒前
魔幻的雁兰完成签到,获得积分20
5秒前
7秒前
7秒前
zkl发布了新的文献求助10
10秒前
Owen应助乐多采纳,获得10
10秒前
10秒前
所所应助Zhukic采纳,获得10
12秒前
彭于晏应助邢文瑞采纳,获得10
13秒前
13秒前
孤独君浩发布了新的文献求助10
13秒前
在水一方应助成就的香彤采纳,获得10
14秒前
15秒前
祖国的多肉完成签到,获得积分10
16秒前
博修发布了新的文献求助10
19秒前
风鱼发布了新的文献求助50
19秒前
Jiaowen发布了新的文献求助10
19秒前
甜心糖完成签到 ,获得积分10
19秒前
义气的巨人发布了新的文献求助200
19秒前
情怀应助雪山飞龙采纳,获得10
21秒前
犬狗狗完成签到 ,获得积分10
21秒前
彩色的惊蛰完成签到,获得积分10
22秒前
不想起昵称完成签到,获得积分10
23秒前
害羞的紫伊完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
25秒前
大方的访波完成签到 ,获得积分10
26秒前
大个应助niuma采纳,获得10
26秒前
ding应助害羞的紫伊采纳,获得10
27秒前
影子发布了新的文献求助10
28秒前
Lucas应助高大的易蓉采纳,获得10
28秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577