SGKT: Session graph-based knowledge tracing for student performance prediction

计算机科学 会话(web分析) 图形 追踪 理论计算机科学 人工智能 机器学习 程序设计语言 万维网
作者
Zhengyang Wu,Li Huang,Qionghao Huang,Changqin Huang,Yong Tang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:206: 117681-117681 被引量:37
标识
DOI:10.1016/j.eswa.2022.117681
摘要

Knowledge tracing is a modeling method of students’ knowledge mastery. The deep knowledge tracing (DKT) model uses long short-term memory (LSTM) to process the sequence data of students exercises. However, the LSTM-based model pays more attention to the short-term response status of students while ignoring the long-term learning process. Moreover, existing graph-based knowledge tracing models focus on the static relationship between exercises and skills, ignoring the dynamic graphs formed by students exercises in a session. In this work, we propose a novel knowledge tracing model which is based on an exercise session graph, named session graph based knowledge tracing (SGKT). The session graph is used to model the students’ answering process. In addition, a relationship graph is used to model the relationship between exercises and skills. Then we use gated graph neural networks to obtain the students’ knowledge state from the session graph and use graph convolutional networks to obtain the embedding representations of exercises and skills in the relationship graph. Next, through the interaction mechanism, multiple interaction states composed of knowledge states and embedding representations are obtained. The attention mechanism is used to find the focus from these states and make predictions. Experiments are conducted on three publicly available datasets and the results show that our approach has advantages over some existing baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然子轩发布了新的文献求助30
刚刚
Ahua发布了新的文献求助10
1秒前
就是躺发布了新的文献求助10
1秒前
gu发布了新的文献求助10
1秒前
朝阳发布了新的文献求助10
2秒前
kkking完成签到,获得积分10
3秒前
Hello应助热寂灬采纳,获得10
3秒前
juziyaya应助平常映雁采纳,获得30
3秒前
qikkk应助完美的海秋采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
鱼香丸子完成签到,获得积分10
4秒前
5秒前
岑靖仇发布了新的文献求助10
6秒前
彭于晏应助杨一采纳,获得10
6秒前
7秒前
7秒前
王计恩发布了新的文献求助10
7秒前
Anddy发布了新的文献求助10
9秒前
papers完成签到,获得积分20
10秒前
gu完成签到,获得积分10
10秒前
12秒前
赘婿应助550采纳,获得10
12秒前
健壮惋清完成签到 ,获得积分10
14秒前
慕青应助Peng采纳,获得10
15秒前
共享精神应助wen采纳,获得10
15秒前
19秒前
三三得九完成签到 ,获得积分10
19秒前
qikkk应助完美的海秋采纳,获得10
20秒前
小星星完成签到,获得积分10
20秒前
FashionBoy应助王计恩采纳,获得30
22秒前
LZHWSND发布了新的文献求助10
23秒前
24秒前
cctv18给隐形耷的求助进行了留言
24秒前
科研通AI2S应助现代的岩采纳,获得10
25秒前
穆振家完成签到,获得积分10
26秒前
云馨完成签到,获得积分10
26秒前
Jiangshan完成签到 ,获得积分10
27秒前
huyang发布了新的文献求助10
30秒前
30秒前
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244023
求助须知:如何正确求助?哪些是违规求助? 2887881
关于积分的说明 8250101
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625972