HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks

库存(枪支) 股票市场 计算机科学 合并(版本控制) 利润(经济学) 计量经济学 经济 微观经济学 机械工程 古生物学 情报检索 工程类 生物
作者
Cong Xu,Huiling Huang,Xiaoting Ying,Jianliang Gao,Zhao Li,Peng Zhang,Jie Xiao,Jiarun Zhang,Jiangjian Luo
出处
期刊:Information Sciences [Elsevier]
卷期号:607: 783-798 被引量:30
标识
DOI:10.1016/j.ins.2022.06.010
摘要

In some stock markets, stock prices are not allowed to rise above a daily limit to restrain the surge of price (called price limit). When the price limit occurs, investors tend to chase the continuing upward momentum for profit-making. However, For the stocks that hit daily price limit, we observe whether they close at daily price limit will lead to the opposite price trends of the next trading day. Therefore, this work aims to predict whether a stock that hits its daily price limit will also close at the same price level (i.e., Type I or Type II). The occurrence of price limit is driven by different levels of market state. For example, it can result from macro-economic changes of the whole market, or it can be traced to some industry-specific factors. A challenging task is to learn a better stock representation with less uncertainty by comprehensively considering the hierarchical property of market state. Accordingly, we design a novel hierarchical architecture, called Hierarchical Graph Neural Network (HGNN), to investigate the market state at hierarchical view for stock type prediction. In HGNN, we construct the stock relation graph and merge stock information hierarchically extracted from multiple views of market state, including node view, relation view and graph view, which takes both historical sequence pattern and stock relation into consideration. Our key innovation is the introduction of hierarchical structure makes the predictive model able to more comprehensively infer the hierarchical property of market state. Further, it also provides the deeper insight for the actual investment practice. To validate the effectiveness of our method, we conduct back-testing on the two-year historical data of more than 2500 main-board stocks in two China stock markets, SSE and SZSE. To support further study of the stock type prediction task, we have published two long-range stock datasets (Datasets are available at https://drive.google.com/file/d/1TXiAyqt3rHveuzdGT6YtswU1e-tBSFUe/view?usp=sharing). Extensive experiments show that our method outperforms the state-of-the-art solutions including ALSTM, GCN and GAT with the improvements of at least 3.54% on average in accuracy. In addition, the average return ratio of SSE and SZSE has improved by 18.57% and 8.75%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到,获得积分10
刚刚
独特乘云完成签到,获得积分10
1秒前
2秒前
LU发布了新的文献求助10
2秒前
JINWEIJIANG完成签到,获得积分10
2秒前
2秒前
搜集达人应助zeyin采纳,获得100
3秒前
4秒前
5秒前
6秒前
6秒前
晨风韵雨发布了新的文献求助10
7秒前
希希完成签到 ,获得积分10
8秒前
10秒前
vgh发布了新的文献求助10
11秒前
qqqlll完成签到 ,获得积分10
12秒前
小蘑菇应助Wency采纳,获得30
14秒前
15秒前
一蓑烟雨任平生完成签到,获得积分10
15秒前
16秒前
洋洋爱吃枣完成签到 ,获得积分10
16秒前
17秒前
毛毛雪发布了新的文献求助10
18秒前
丰D完成签到,获得积分10
18秒前
19秒前
19应助celine123采纳,获得150
19秒前
cincrady完成签到,获得积分10
19秒前
迷路曼彤完成签到 ,获得积分10
20秒前
20秒前
20秒前
Re完成签到,获得积分10
21秒前
欢城发布了新的文献求助20
21秒前
如梦如画完成签到,获得积分10
23秒前
33发布了新的文献求助30
24秒前
25秒前
默默纲发布了新的文献求助30
25秒前
seanfly发布了新的文献求助10
26秒前
27秒前
超帅柚子完成签到 ,获得积分10
28秒前
wanci应助尹博士采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291792
求助须知:如何正确求助?哪些是违规求助? 2928259
关于积分的说明 8436220
捐赠科研通 2600160
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642825