单层
石墨烯
材料科学
带隙
富勒烯
纳米技术
晶体结构
化学物理
结晶学
光电子学
化学
有机化学
作者
Lingxiang Hou,Xueping Cui,Bo Guan,Shaozhi Wang,Rui‐An Li,Yunqi Liu,Daoben Zhu,Jian Zheng
出处
期刊:Nature
[Springer Nature]
日期:2022-06-15
卷期号:606 (7914): 507-510
被引量:220
标识
DOI:10.1038/s41586-022-04771-5
摘要
Two-dimensional (2D) carbon materials, such as graphene, have attracted particular attention owing to the exceptional carrier transport characteristics that arise from the unique π-electron system in their conjugated carbon network structure1-4. To complement zero-bandgap graphene, material scientists have devoted considerable effort to identifying 2D carbon materials5-8. However, it is a challenge to prepare large-sized single-crystal 2D carbon materials with moderate bandgaps5,9. Here we prepare a single-crystal 2D carbon material, namely monolayer quasi-hexagonal-phase fullerene (C60), with a large size via an interlayer bonding cleavage strategy. In this monolayer polymeric C60, cluster cages of C60 are covalently bonded with each other in a plane, forming a regular topology that is distinct from that in conventional 2D materials. Monolayer polymeric C60 exhibits high crystallinity and good thermodynamic stability, and the electronic band structure measurement reveals a transport bandgap of about 1.6 electronvolts. Furthermore, an asymmetric lattice structure endows monolayer polymeric C60 with notable in-plane anisotropic properties, including anisotropic phonon modes and conductivity. This 2D carbon material with a moderate bandgap and unique topological structure offers an interesting platform for potential application in 2D electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI