Topological dimensionality reduction-based machine learning for efficient gradient-free 3D topology optimization

拓扑优化 拓扑(电路) 降维 人工神经网络 维数之咒 网络拓扑 计算机科学 水准点(测量) 算法 数学优化 有限元法 人工智能 数学 工程类 结构工程 组合数学 地理 操作系统 大地测量学
作者
Zhaoyou Sun,Yaguang Wang,Pai Liu,Yangjun Luo
出处
期刊:Materials & Design [Elsevier BV]
卷期号:220: 110885-110885 被引量:29
标识
DOI:10.1016/j.matdes.2022.110885
摘要

Powerful gradient-free topology optimization methods are needed for structural design concerning complex responses. In this paper, a novel gradient-free optimization method is proposed by integrating the material-field series expansion topological parameterization and the deep neural networks, providing two-fold advances: firstly, it generally reduces the massive topological design variables to fewer than 200, while keeps the capability to represent relative complex 3D topologies and clear boundaries; secondly, by constructing a sequential neural network surrogate model, it sufficiently explores the reduced design space and is capable of handling multi-peak and discontinuous optimization problems. The effectiveness of this method is illustrated via several design problems, among which the optimized material effective bulk modulus achieves 98% of the H-S bound and the highly-nonlinear peak weld stress in a phone dropping process is decreased by 16.59%. This method reduces the computational time by 1–4 orders of magnitude compared with the coarse-mesh-based gradient-free methods, and it is the first time to successfully conduct gradient-free 3D topology optimization with thousands of finite elements. The method's ease of implementation and compatibility with various simulation software, brings topology optimization into complex industrial applications and proves that gradient-free technology represents an effective optimization benchmark for improving structural performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
有魅力的香芦完成签到,获得积分10
1秒前
俭朴的采波完成签到 ,获得积分10
2秒前
LaTeXer应助keyandog采纳,获得30
2秒前
幽灵发布了新的文献求助10
3秒前
太上老君发布了新的文献求助10
3秒前
今后应助dd采纳,获得10
4秒前
5秒前
5秒前
Owen应助葉要加油采纳,获得10
5秒前
9秒前
hehehe完成签到,获得积分10
11秒前
完美世界应助积极的帽子采纳,获得10
13秒前
小兔子完成签到 ,获得积分10
13秒前
14秒前
15秒前
李白白白发布了新的文献求助10
15秒前
reirei应助shinn采纳,获得10
18秒前
背后海亦发布了新的文献求助10
19秒前
Amy完成签到 ,获得积分10
19秒前
song完成签到 ,获得积分10
20秒前
脑洞疼应助王一一采纳,获得10
21秒前
21秒前
21秒前
南工大小何完成签到,获得积分10
22秒前
23秒前
25秒前
Mesting完成签到,获得积分10
26秒前
七月发布了新的文献求助10
27秒前
Ranrunn完成签到,获得积分10
28秒前
Eureka完成签到,获得积分10
30秒前
30秒前
justsoso完成签到,获得积分10
30秒前
充电宝应助binbin采纳,获得10
32秒前
DQQ发布了新的文献求助10
33秒前
完美世界应助shinn采纳,获得10
34秒前
鲤鱼涔雨发布了新的文献求助10
35秒前
36秒前
E神—十面埋伏完成签到,获得积分10
37秒前
benben应助科研通管家采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602