作者
Yutao Zhu,Xiaoqian Hu,Ping Wang,Hongwei Wang,Xiaoyang Ge,Fuguang Li,Yuxia Hou
摘要
Plant phospholipase D (PLD) and its product phosphatidic acid (PA) function in both abiotic and biotic stress signaling. However, to date, a PLD gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we isolated and identified a PLD gene GhPLDδ from cotton (Gossypium hirsutum), which functions in Verticillium wilt resistance and salt tolerance. GhPLDδ was highly induced by salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen peroxide, PEG 6000, NaCl, and Verticillium dahliae in cotton plants. The positive role of GhPLDδ in regulating plant resistance to V. dahliae was confirmed by loss- and gain-of-function analyses. Upon chitin treatment, accumulation of PA, hydrogen peroxide, JA, SA, and the expression of genes involved in MAPK cascades, JA- and SA-related defense responses were positively related to the level of GhPLDδ in plants. The treatment by exogenous PA could activate the expression of genes related to MAPK, SA, and JA signaling pathways. Moreover, GhPLDδ overexpression enhanced salt tolerance in Arabidopsis as demonstrated by the increased germination rate, longer seedling root, higher chlorophyll content, larger fresh weight, lower malondialdehyde content, and fully expand rosette leaves. Additionally, the PA content and the expression of the genes of the MAPK cascades regulated by PA were increased in GhPLDδ-overexpressed Arabidopsis under salt stress. Taken together, these findings suggest that GhPLDδ and PA are involved in regulating plant defense against both V. dahliae infection and salt stress.