Comparative efficacy and acceptability of drug treatments for Parkinson’s disease with depression: A systematic review with network meta-analysis

内科学 荟萃分析 安慰剂 医学 再摄取抑制剂 不利影响 重性抑郁障碍 随机对照试验 萧条(经济学) 抗抑郁药 心理学 药理学 替代医学 宏观经济学 病理 扁桃形结构 海马体 经济
作者
Xiaole Wang,Sitong Feng,Yating Wang,Bin Chen,Zhen‐Zhen Wang,Nai‐Hong Chen,Yi Zhang
出处
期刊:European Journal of Pharmacology [Elsevier]
卷期号:927: 175070-175070 被引量:22
标识
DOI:10.1016/j.ejphar.2022.175070
摘要

Depressive symptom is the prevailing non-motor symptom of Parkinson's disease (PD). Drug treatments for depressed PD (dPD) can mitigate the symptoms of patients. However, the results are discordant and need further analysis. This systematic review with network meta-analysis aims to evaluate the drug treatments for dPD. We included double-blind, randomized controlled trials to compare antidepressants with placebo or other antidepressants in dPD. We performed traditional pairwise analysis and network meta-analysis concerning the efficacy, acceptability, depression score, and adverse effect. The surface under the cumulative ranking curve was to assess the ranking probabilities of the enrolled agents. We enrolled 62 studies, including 12,353 subjects, to analyze these estimates. For the traditional pairwise meta-analysis, dopamine agonist (DOP; OR = 2.20 [95% CI, 1.46 to 3.33]) and selective serotonin reuptake inhibitor (SSRI; OR = 2.30 [95% CI, 1.15 to 4.60]) were observed to improve the efficacy compared with placebo. For network meta-analysis, DOP was observed to improve the efficacy compared with placebo (OR = -0.84 [95% CI, -1.20 to -0.48]). Both direct and indirect evidence showed that several treatments, e.g., DOP, monoamine-oxidase inhibitor, serotonin-norepinephrine reuptake inhibitors, SSRI, and tricyclic antidepressants, significantly improved depressive symptoms. DOP and SSRI had good efficacy and improved symptoms considerably in dPD, but the adverse effect of these agents was needed to follow closely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助我学不进去了采纳,获得10
刚刚
Jess完成签到,获得积分10
1秒前
爱听歌的冷安完成签到,获得积分10
2秒前
小菜瓜完成签到,获得积分10
2秒前
xxfsx应助sally采纳,获得10
4秒前
xiaoxin发布了新的文献求助10
4秒前
机灵饼干发布了新的文献求助150
5秒前
anna1992发布了新的文献求助10
5秒前
7秒前
8秒前
Jasper应助xiaoxin采纳,获得10
9秒前
11秒前
hbhbj应助小菜瓜采纳,获得20
12秒前
葵花籽完成签到,获得积分10
13秒前
keeeeeeeli发布了新的文献求助10
14秒前
14秒前
独特的初彤完成签到 ,获得积分10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
小青椒应助科研通管家采纳,获得100
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
凤凰应助科研通管家采纳,获得30
18秒前
wanci应助松松松采纳,获得50
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
WB87应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
WB87应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
NiL应助科研通管家采纳,获得10
19秒前
19秒前
英俊的铭应助xxm采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
Hilda007应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637