已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing low-Reynolds-number predation via optimal control and reinforcement learning

捕食 计算机科学 雷诺数 最优控制 控制理论(社会学) 弹道 生态学 数学优化 控制(管理) 数学 人工智能 机械 物理 生物 天文 湍流
作者
Guangpu Zhu,Wenzhen Fang,Lailai Zhu
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:944 被引量:17
标识
DOI:10.1017/jfm.2022.476
摘要

We seek the best stroke sequences of a finite-size swimming predator chasing a non-motile point or finite--size prey at low Reynolds number. We use optimal control to seek the globally-optimal solutions for the former and RL for general situations. The predator is represented by a squirmer model that can translate forward and laterally, rotate and generate a stresslet flow. We identify the predator's best squirming sequences to achieve the time-optimal (TO) and efficiency-optimal (EO) predation. For a point prey, the TO squirmer executing translational motions favours a two-fold L-shaped trajectory that enables it to exploit the disturbance flow for accelerated predation; using a stresslet mode significantly expedites the EO predation, allowing the predator to catch the prey faster yet with lower energy consumption and higher predatory efficiency; the predator can harness its stresslet disturbance flow to suck the prey towards itself; compared to a translating predator, its compeer combining translation and rotation is less time--efficient, and the latter occasionally achieves the TO predation via retreating in order to advance. We also adopt RL to reproduce the globally-optimal predatory strategy of chasing a point prey, qualitatively capturing the crucial two--fold attribute of TO path. Using a numerically emulated RL environment, we explore the dependence of the optimal predatory path on the size of prey. Our results might provide useful information that help design synthetic microswimmers such as \textit{in vivo} medical micro-robots capable of capturing and approaching objects in viscous flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
朴素的无招完成签到 ,获得积分10
2秒前
2秒前
3秒前
keep完成签到 ,获得积分10
4秒前
7秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
王w完成签到 ,获得积分10
11秒前
16秒前
科研通AI5应助HYT采纳,获得10
18秒前
不喜发布了新的文献求助10
20秒前
24秒前
25秒前
星叶完成签到 ,获得积分10
27秒前
28秒前
brianzk1989完成签到,获得积分0
28秒前
28秒前
明理萃发布了新的文献求助10
29秒前
小蜻蜓完成签到,获得积分10
30秒前
34秒前
郑总完成签到 ,获得积分10
34秒前
敏感的百招完成签到,获得积分10
36秒前
37秒前
39秒前
40秒前
41秒前
42秒前
肥波完成签到,获得积分10
43秒前
Jasper应助拼命十三娘采纳,获得10
43秒前
147852发布了新的文献求助10
44秒前
shuqi完成签到 ,获得积分10
44秒前
45秒前
45秒前
积极的蘑菇完成签到 ,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968138
求助须知:如何正确求助?哪些是违规求助? 3513109
关于积分的说明 11166577
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629