Development and validation of machine learning models for prediction of seizure outcome after pediatric epilepsy surgery

癫痫 一致性 医学 癫痫外科 逻辑回归 队列 单变量 磁共振成像 单变量分析 置信区间 回顾性队列研究 机器学习 人工智能 外科 多元分析 内科学 放射科 多元统计 计算机科学 精神科
作者
Omar Yossofzai,Aria Fallah,Cassia Maniquis,Shelly Wang,John Ragheb,Alexander G. Weil,Tristan Brunette‐Clément,Andrea Andrade,George M. Ibrahim,Nicholas Mitsakakis,Elysa Widjaja
出处
期刊:Epilepsia [Wiley]
卷期号:63 (8): 1956-1969 被引量:14
标识
DOI:10.1111/epi.17320
摘要

There is substantial variability in reported seizure outcome following pediatric epilepsy surgery, and lack of individualized predictive tools that could evaluate the probability of seizure freedom postsurgery. The aim of this study was to develop and validate a supervised machine learning (ML) model for predicting seizure freedom after pediatric epilepsy surgery.This is a multicenter retrospective study of children who underwent epilepsy surgery at five pediatric epilepsy centers in North America. Clinical information, diagnostic investigations, and surgical characteristics were collected, and used as features to predict seizure-free outcome 1 year after surgery. The dataset was split randomly into 80% training and 20% testing data. Thirty-five combinations of five feature sets with seven ML classifiers were assessed on the training cohort using 10-fold cross-validation for model development. The performance of the optimal combination of ML classifier and feature set was evaluated in the testing cohort, and compared with logistic regression, a classical statistical approach.Of the 801 patients included, 61.3% were seizure-free 1 year postsurgery. During model development, the best combination was XGBoost ML algorithm with five features from the univariate feature set, including number of antiseizure medications, magnetic resonance imaging lesion, age at seizure onset, video-electroencephalography concordance, and surgery type, with a mean area under the curve (AUC) of .73 (95% confidence interval [CI] = .69-.77). The combination of XGBoost and univariate feature set was then evaluated on the testing cohort and achieved an AUC of .74 (95% CI = .66-.82; sensitivity = .87, 95% CI = .81-.94; specificity = .58, 95% CI = .47-.71). The XGBoost model outperformed the logistic regression model (AUC = .72, 95% CI = .63-.80; sensitivity = .72, 95% CI = .63-.82; specificity = .66, 95% CI = .53-.77) in the testing cohort (p = .005).This study identified important features and validated an ML algorithm, XGBoost, for predicting the probability of seizure freedom after pediatric epilepsy surgery. Improved prognostication of epilepsy surgery is critical for presurgical counseling and will inform treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助12366666采纳,获得10
2秒前
wm发布了新的文献求助10
3秒前
Glenavan发布了新的文献求助10
3秒前
hongyi完成签到,获得积分10
4秒前
上官若男应助文静的人雄采纳,获得10
4秒前
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
zhoujian完成签到 ,获得积分10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
旋转鸡爪子完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
XZZ应助科研通管家采纳,获得20
5秒前
星星完成签到,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
fee完成签到,获得积分10
5秒前
6秒前
YY完成签到,获得积分10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
fd163c应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
tuetue发布了新的文献求助10
6秒前
丁仪应助科研通管家采纳,获得10
6秒前
8秒前
桐桐应助荨麻草采纳,获得10
10秒前
congguitar完成签到,获得积分10
10秒前
11秒前
迪巴拉发布了新的文献求助10
11秒前
my完成签到,获得积分10
12秒前
科研通AI5应助bakbak采纳,获得30
14秒前
haha发布了新的文献求助10
16秒前
现代的妍发布了新的文献求助10
16秒前
活力的珊完成签到 ,获得积分10
16秒前
完美世界应助成就双双采纳,获得10
17秒前
1234发布了新的文献求助30
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
The Finite Element Method Its Basis and Fundamentals 2000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752811
求助须知:如何正确求助?哪些是违规求助? 3296371
关于积分的说明 10093570
捐赠科研通 3011229
什么是DOI,文献DOI怎么找? 1653678
邀请新用户注册赠送积分活动 788339
科研通“疑难数据库(出版商)”最低求助积分说明 752809