Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems

强化学习 计算机科学 分布式计算 调度(生产过程) 马尔可夫决策过程 实时计算 马尔可夫过程 工程类 人工智能 运营管理 数学 统计
作者
Yi Wang,Dawei Qiu,Goran Štrbac
出处
期刊:Applied Energy [Elsevier]
卷期号:310: 118575-118575 被引量:46
标识
DOI:10.1016/j.apenergy.2022.118575
摘要

Extreme events are featured by high impact and low probability, which can cause severe damage to power systems. There has been much research focused on resilience-driven operational problems incorporating mobile energy storage systems (MESSs) routing and scheduling due to its mobility and flexibility. However, existing literature focuses on model-based optimization approaches to implement the routing process of MESSs, which can be time consuming and raise privacy issues since the requirement for global information of both power and transportation networks. Furthermore, a real-time automatic control scheme of MESSs has become a challenging task due to the system high variability. As such, this paper develops a model-free real-time multi-agent deep reinforcement learning approach featuring parameterized double deep Q-networks to reformulate the coordination effect of MESSs routing and scheduling process as a Partially Observable Markov Game, which is capable of capturing a hybrid policy including both discrete and continuous actions. A coupled transportation network and linearized AC-OPF algorithm are realized as the environment, while the internal uncertainties associated with renewable energy sources, load profiles, line outages, and traffic volumes are incorporated into the proposed data-driven approach through learning procedure. Extensive case studies including both 6-bus and 33-bus power networks are developed to evaluate the effectiveness of the proposed approach. Specifically, a detailed comparison between different multi-agent reinforcement learning and model-based optimization approaches is conducted to present the superior performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王同学发布了新的文献求助10
刚刚
vica发布了新的文献求助10
1秒前
2秒前
上官若男应助妥妥酱采纳,获得10
4秒前
5秒前
lyx完成签到,获得积分10
6秒前
8秒前
兔兔发布了新的文献求助20
9秒前
9秒前
科目三应助魔幻灯泡采纳,获得10
9秒前
互助遵法尚德应助喜庆采纳,获得10
9秒前
Smiles发布了新的文献求助10
10秒前
泡泡汽水完成签到,获得积分10
11秒前
小王同学完成签到,获得积分10
12秒前
FashionBoy应助陈住气采纳,获得10
12秒前
我现在感觉很颓完成签到,获得积分10
13秒前
哈哈哈哈发布了新的文献求助10
14秒前
wlnhyF完成签到,获得积分10
16秒前
斯文败类应助fenmiao采纳,获得30
18秒前
Smiles完成签到,获得积分10
18秒前
你好呀嘻嘻完成签到 ,获得积分10
19秒前
19秒前
21秒前
嘎嘎的鸡神完成签到,获得积分10
21秒前
高大凌寒应助香蕉汉堡采纳,获得10
22秒前
幽若宝宝完成签到,获得积分0
23秒前
fanfan完成签到,获得积分20
24秒前
DDX完成签到 ,获得积分10
24秒前
24秒前
喜庆完成签到,获得积分10
25秒前
不敢心动发布了新的文献求助10
26秒前
26秒前
庸人自扰完成签到,获得积分10
30秒前
99giddens发布了新的文献求助200
30秒前
31秒前
简单奎发布了新的文献求助10
31秒前
大模型应助Wonder采纳,获得10
34秒前
菜鸟12号完成签到 ,获得积分10
35秒前
vica完成签到,获得积分10
36秒前
ss25完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012