Electronic Regulation of ZnCo Dual‐Atomic Active Sites Entrapped in 1D@2D Hierarchical N‐Doped Carbon for Efficient Synergistic Catalysis of Oxygen Reduction in Zn–Air Battery

催化作用 电池(电) 碳纤维 材料科学 热解 化学工程 过渡金属 密度泛函理论 兴奋剂 碳纳米管 氧还原反应 氧气 塔菲尔方程 纳米技术 化学 电极 电化学 物理化学 有机化学 计算化学 光电子学 功率(物理) 工程类 物理 复合材料 复合数 量子力学
作者
Shi-Yi Lin,Lixue Xia,Ying Cao,Hongling Meng,Lu Zhang,Jiu‐Ju Feng,Yan Zhao,Aijun Wang
出处
期刊:Small [Wiley]
卷期号:18 (14) 被引量:45
标识
DOI:10.1002/smll.202107141
摘要

Transition metal-based nitrogen-doped carbon (M-Nx -C) is considered as a promising catalyst for the oxygen reduction reaction (ORR) in clean energy storage and conversion devices. Herein, ZnCo dual-atomic sites are incorporated in hierarchical N-doped carbon (HNC), with 1D nanotubes wrapped in 2D nanosheets structure (termed as 1D@2D ZnCo-HNC), via a one-step bio-inspired pyrolysis. The feeding ratio of Zn to Co precursor and pyrolytic temperature are critically modulated to achieve well-defined morphologies of the products, endowing them with the integrated merits of nanotubes and nanosheets as efficient ORR catalysts. Benefiting from the particular structure and electronic regulation of Zn on Co, the ZnCo-Nx dual-atomic system exhibits excellent ORR catalytic characteristics with an onset potential of 1.05 V and a half-wave potential of 0.82 V. Density functional theory calculations further explain the regulating role of Zn, such that the adjusted Co in ZnCo-Nx sites significantly reduces the energy cost to ultimately facilitate the ORR. Moreover, the Zn-air battery assembled with ZnCo-HNC is capable of delivering the maximum power density of 123.7 mW cm-2 and robust stability for 110 h (330 cycles). This method provides a promising strategy for fabricating efficient transition metal-based carbon catalysts for green energy devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Zyc采纳,获得10
刚刚
coke完成签到,获得积分10
1秒前
坦率白竹完成签到,获得积分10
4秒前
jiayou完成签到,获得积分10
5秒前
ddstty完成签到,获得积分10
5秒前
5秒前
巅峰囚冰完成签到,获得积分10
7秒前
daniel2233应助寒冷的小熊猫采纳,获得10
8秒前
10秒前
缥缈的觅风完成签到 ,获得积分10
10秒前
热心擎宇发布了新的文献求助10
11秒前
13秒前
14秒前
爱咋咋地发布了新的文献求助10
15秒前
利华尔完成签到,获得积分10
15秒前
jtyt发布了新的文献求助10
15秒前
后知后觉完成签到,获得积分10
15秒前
十九集完成签到 ,获得积分10
16秒前
16秒前
Zyc发布了新的文献求助10
18秒前
momo发布了新的文献求助10
18秒前
18秒前
caomei完成签到 ,获得积分10
18秒前
热心擎宇完成签到,获得积分10
20秒前
LLLxy完成签到,获得积分20
21秒前
小青椒应助杜文彦采纳,获得60
21秒前
朴素羊完成签到 ,获得积分10
21秒前
传奇3应助君故采纳,获得10
22秒前
量子星尘发布了新的文献求助30
22秒前
24秒前
25秒前
fgh完成签到 ,获得积分10
25秒前
25秒前
李爱国应助虚心的海蓝采纳,获得10
27秒前
Vicky完成签到 ,获得积分10
28秒前
梁平完成签到 ,获得积分10
29秒前
huiseXT完成签到,获得积分10
29秒前
wenti完成签到,获得积分10
29秒前
Jade0259完成签到 ,获得积分10
30秒前
扶光完成签到,获得积分10
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071