Multi-dimension tool wear state assessment criterion on the spiral edge of the milling cutter

GSM演进的增强数据速率 螺旋(铁路) 刀具磨损 维数(图论) 铣刀 机床 人工智能 计算机科学 工程类 计算机视觉 工程制图 机械加工 机械工程 数学 纯数学
作者
Ying Tian,Liming Yang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (11-12): 8243-8256 被引量:4
标识
DOI:10.1007/s00170-021-08539-5
摘要

In the assessment of the tool wear state for the spiral edge of milling cutter based on machine vision, the traditional assessment criterion is often inaccurate due to the problem of missing of information, especially near the tip area. In order to deal with this problem, different lighting-condition settings and additional non-image information compensation techniques are needed. In view of this, an integration tool wear detection method combined line laser edge detection and machine vision is proposed. Subsequently, the combined data acquirement experimental system is designed and built, which can simultaneously acquire two types of parameters: diameter and images under the same detection condition. Then, based on the above information, a multi-dimension series assessment criterion is proposed consisting of three dimensions index: The one-dimensional assessment index gives the average wear value of the spiral side, which is mainly used as data ordination and characterizes the rule of tool wear degradation; the two-dimensional assessment index describes the contour of the wear region and calculates the area value, which can predict the change of the tool wear stage more precisely; and the three-dimensional assessment index gives the 3D morphology by adding depth information within the wear region and quantifies the volume of the worn-off part, which provides clues for early warning of the deterioration caused by the tool worn. Experiments proved that the multi-dimension series assessment criterion is helpful in reflecting the trend of tool life and giving a more accurate assessment of the tool wear state for the spiral edge of a milling cutter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
123完成签到,获得积分20
1秒前
1秒前
1秒前
Owen应助一个可爱的人采纳,获得50
2秒前
zpt发布了新的文献求助10
2秒前
chuan完成签到,获得积分10
3秒前
香蕉觅云应助郝事采纳,获得10
3秒前
LSD发布了新的文献求助10
5秒前
5秒前
肉卷完成签到 ,获得积分10
5秒前
Suagy发布了新的文献求助10
6秒前
柚子皮完成签到,获得积分10
7秒前
香蕉觅云应助LionontheMars采纳,获得10
7秒前
典雅雁梅发布了新的文献求助10
8秒前
8秒前
Hazel完成签到 ,获得积分10
9秒前
9秒前
科研通AI2S应助阿拉斯加采纳,获得200
10秒前
深情安青应助小董不懂采纳,获得10
10秒前
lch23560应助lXiao采纳,获得30
10秒前
乐乐应助anna采纳,获得10
11秒前
迷路的含桃完成签到 ,获得积分10
11秒前
12秒前
QuangVu完成签到,获得积分10
12秒前
lishuang5发布了新的文献求助10
13秒前
一二一完成签到,获得积分20
14秒前
14秒前
xiaomili完成签到,获得积分10
14秒前
彭于晏应助Guoqiang采纳,获得10
15秒前
大模型应助Guoqiang采纳,获得10
15秒前
魔幻哈密瓜应助Guoqiang采纳,获得30
15秒前
curtisness应助Guoqiang采纳,获得10
15秒前
curtisness应助Guoqiang采纳,获得10
15秒前
JTHe应助LSD采纳,获得20
16秒前
殇春秋应助Guoqiang采纳,获得10
16秒前
xiaomili发布了新的文献求助10
17秒前
qqq发布了新的文献求助10
18秒前
ss完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251